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1  Introduction
In the face of the urgent demand for high quality pilots for the launching of aircraft car-
riers and the commissioning of carrier-borne aircraft, how to train high quality and effi-
cient military flying talents is a historical mission in front of military flying academies. 
At present, there is still a gap in the mining application of big data for the growth of 
flight cadets and the mining of flight talent cultivation and growth rules based on big 
data support. Therefore, it is of great practical significance to carry out effective research 
on intelligent flight maneuver identification and evaluation methods, which are mainly 
reflected in the following four aspects:

First, launch the pioneering exploration of big data construction and application for 
the growth of flight cadets. The industry has reached a consensus on the value and sig-
nificance of big data for the growth of flight cadets. It is urgent to carry out the construc-
tion of big data standard system, construction of supporting information conditions, 
data production and accumulation, data mining, analysis and application.

Second, explore an effective way to improve the quality of flight talent training based 
on data. With the rapid development of network information system application and 
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communication technology, data collection and accumulation of flight cadets have 
become increasingly rich [1, 2]; The growth data of flight cadets can accurately reflect 
their learning motivation, learning attitude and learning effect. Through data mining, 
and correlation analysis, forming students into multidimensional dynamic curve of 
growing up, can appear in students learning will reduce, study effect of weakening trend, 
actively introduce management department, teaching and training department human 
intervention and guidance to help, to stimulate students learning enthusiasm, supple-
ment short weaknesses; Through the accumulation of a large number of historical flight 
data and flight statistics, Construct the growth model of flight cadet training, And after 
a large number of historical data training and test correction, used for scientific early 
warning of flying cadets, Put forward reasonable opinions and suggestions on the model 
diversion of students in data, providing an effective way to improve the quality of flight 
talent training.

Third, solve the urgent need of flight training quality assessment of flight cadets. Dur-
ing flight training, cadets have accumulated a large number of rich flight parameters. For 
a long time, the training management departments at all levels, in the implementation 
of the outline of the training requirements, check whether the flight vehicles complete 
regulations training maneuver, training maneuver whether meet the requirements, etc., 
in the face of vast amounts of flight parameter data, and to rely on artificial analysis is 
difficult to achieve, ’Whether to fly, whether the quality of the flight is good’ is plagued 
by departments at all levels of reality problem for a long time. Based on the theoretical 
method and means of flight parameter data mining, the realization of automatic identifi-
cation of flight regimes and quantitative evaluation of maneuver quality, automatic intel-
ligent processing of flight parameter data of each flight, and analysis of flight maneuver 
completion rate and quality can effectively solve the urgent need of management depart-
ments at all levels.

Fourth, it is inevitable to give full play to the data effectiveness of flight cadets’ growth. 
Big data is hailed as a fighting force in the new field and new space of military struggle. 
Education and training are moving towards the era of big data, who can discover the 
data, who can win the future survival; Who can mine the data, who can win the future 
development; Who can leverage data and provide personalized services, who can win 
the competition in the future. With the in-depth promotion of the concept of big data 
and the iterative evolution of data processing technology, how to fully leverage these real 
historical data, let data "speak", and use data to support decisions has become the reality 
of the development of The Times.

2 � Related work
It is the premise of pilot control quality monitoring that flight movements can be quickly 
and accurately identified from the flight parameter data. Applied in the field of flight 
cadets training, it can realize the evaluation of flight quality of flight cadets, the targeted 
guidance of weaknesses of flight cadets in flight solitary action, the targeted auxiliary 
decision-making of flight cadets diversion and the early warning of flight cadets in terms 
of their successful flight so as to improve the efficiency of flight training.

A lot of flight training data resources were accumulated during the daily flight training 
of military flying cadets, which can be utilized to analyze and assess their flight action 
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and flight quality. But the problems exist widely in the traditional algorithm applied to 
process such data, such as the not high accuracy in the identification of the flight action, 
the low resolution ratio of the quality assessment on a five-point scale, the unsatisfac-
tory discrimination of scoring in application etc. Especially in the current situation of 
the enhancement in military flight training intensity and the better flight mobility, the 
traditional motion recognition and quality evaluation algorithm is almost invalid in the 
application, resulting in the difficulty in carrying out the objective data evaluation of the 
current military flight quality.

Flight motion recognition is essentially a pattern recognition problem. Pilot control 
quality monitoring was carried out earlier in civil aviation aircraft. Because civil avia-
tion aircraft were in flat flight state for a long time. pilot control quality monitoring was 
mainly reflected in the identification of take-off, climb, descent and landing stages, which 
is easy to identify and of little value and significance. Military aircraft, especially fighter 
aircraft, are difficult to be identified because of their strong flight maneuverability, com-
plex and changeable movements, and are prone to misidentification and missing iden-
tification. Mature application has been used in foreign military aircraft based on radar 
observation and data mining to analyze the aircraft flight movements and movement 
trend in order to realize the prediction of the other side’s situational awareness on the 
battlefield and win the battlefield situational countermeasures initiative. The research on 
flight motion recognition methods of domestic military aircraft began in the beginning 
of this century, mainly by Air Force Engineering University and Naval Aviation Univer-
sity etc. Aiming at flight motion recognition tasks, the flight motion recognition methods 
widely used in engineering mainly rely on expert systems and the fast identification of 
the flight action was achieved by the established knowledge base of motion recognition 
according to the changing characteristics of flight parameters extracted from the flying 
data by the specialists’ experience, the developed inferen-ce engine applying advanced 
computer language and the forward accurate reasoning strategy adopted. In 2004, Xie 
Chuan et  al. used support vector machine to divide the flight action recognition task 
into two stages: action data screening and action segment classification [3]. In 2005, Xie 
Chuan et al. proposed a method to extract the characteristics of flight parameters using 
rough set theory to improve the accuracy of model classification [4]. Ni Shihong et al. 
constructed the knowledge base of flight parameter discrimination rules for typical flight 
actions based on the idea of expert system [5]. In 2006, Zhang Ruifeng et al. proposed an 
algorithm using Cardinals cubic spline curve to generate aircraft flight paths [6] as the 
basis of flight motion evaluation. Yin Wenjun et al. proposed a flight action recognition 
method based on genetic algorithm [7]. In 2011, Su Chen et al. and Gao Gao et al. used 
artificial immune system algorithm [8] and improved quantum genetic algorithm [9] 
respectively to automatically extract flight action discrimination rules without relying on 
expert knowledge. In 2018, Wang Yuwei et al. proposed an extraction method of flight 
action recognition rules based on whale optimization algorithm [10]. In addition, expert 
knowledge was used to decompose complex actions into five basic actions and establish 
a flight action knowledge base to realize flight action recognition [11]. The disadvantage 
of this method is that it is difficult to judge the completeness and accuracy of knowledge 
base and knowledge multi-layer nested relationship will appear for the representation 
of complex maneuvering. In extreme cases, for some tactical maneuvers, it is difficult to 
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extract the characteristics of flight parameters, and the knowledge of motion recognition 
cannot be expressed.

In recent years, scholars have proposed that the problem of motion recognition can be 
transformed into the similarity query of flight time series and standard time series. The 
earliest research paper on time series similarity was proposed by Agrawal et al. in 1993 
[12, 13], and subsequently became one of the hot issues with many valuable studies, 
such as discrete Fourier Transform method (DFT) [12, 13], discrete wavelet transform 
method (DWT) [14], Singular value decomposition (SVD) [15], piecewise Approxima-
tion (PAA) [16], dynamic time warping (DTW) [17, 18], etc. The relevant research began 
earlier that Discrete Fourier transform and R-tree search are used to realize the simi-
larity query of time series. The discrete wavelet transform method uses the scaling and 
translation wavelet to replace the fixed window for calculation and analysis. However, 
the information loss of this algorithm is serious, so it is not suitable for non-station-
ary sequence. The piecewise approximation method segmented the time series by equal 
width window, and the time series in each window was represented by the window aver-
age value. A piecewise linear representation of the time series was obtained, and then 
the similarity query was carried out. Its advantage is that it has strong data compression 
ability and can keep the main shape of time series well. Its disadvantages are that it can-
not handle sequences of arbitrary length and does not support distance measurements 
with weights. Singular value decomposition method regards variables in time series as 
random variables, the observed values at each time point as sample points and the cor-
relation coefficient matrix as the basis of feature extraction and constructs a pattern 
matching model according to the coordinate transformation principle in linear space. 
Its advantage is that it has strong data compression ability, and the precise details of data 
processing can be retained. Its disadvantages are that it cannot handle sequences of arbi-
trary length and does not support distance measurements with weights. Singular value 
decomposition (SVD) can also realize the motion analysis of multiple flight parameters, 
and its transformation is global, but the time and space complexity of the algorithm are 
relatively high. Dynamic time warping is widely used in speech recognition, and its core 
idea is to obtain the minimum path through dynamic time warping technology, which 
has the advantage of realizing the optimal alignment and matching, supporting the 
time axis bending of sequence and the similarity measurement of time series of differ-
ent lengths, but the calculation is relatively complicated. In 2015, Li Hongli et  al. use 
multiple dynamic time neat (Multivariant Dynamic Time Warping MDTW) algorithm 
to calculate the similarity between the time sequence and standard action sequence to 
determine its action categories [19]. In 2017, Shen Yichao et al. used hierarchical clus-
tering based on multivariate dynamic time regularization to screen node features, and 
then constructed a Bayesian network to predict the probability of time series belonging 
to different categories [20]. Zhou Chao et al. used the improved multivariate dynamic 
time warping algorithm to achieve the hierarchical pre-classification and sub-classifi-
cation of flight movements [21]. In 2019, Shen Yichao et al. proposed a dynamic time-
warping path ill-condition matching algorithm to remove invalid fragments in time 
series and improve the precision of action starting and ending points [22]. In 2018, Xiao 
Yanping et al. conducted a comprehensive analysis of the lateral-directional flight qual-
ity evaluation indexes of aircraft from the perspective of system dynamics model [23]. 
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In 2019, Wang Yuwei et al. constructed a five-level comprehensive evaluation structure 
system for the flight quality, and used the comprehensive weighting method to con-
duct weighted evaluation on the score of basic movements [24]. In 2020, Xu Gang et al. 
proposed an automatic evaluation method of training effectiveness of combat simula-
tion [25]. In addition, some studies used low-cost simulated flight data to replace costly 
actual flight [26]. However, influenced by many factors, such as the aircraft performance, 
the pilot operation habits, the flight environment et. complex maneuver are with strong 
randomness and fuzziness. Hence, the above algorithms are, generally, falling into disuse 
because the recognition features is not diverse enough, they adopt the hard division for 
the precise threshold and the complex maneuver randomness and fuzziness fail to be 
fully illustrated for the knowledge expression and reasoning process.

3 � Flight maneuver recognition and quality assessment system
This paper solves the identification of the maneuver name, flight time starting point and 
quality assessment of three specific issues, build flight regimes intelligent identifica-
tion and quality evaluation system. Based on flight parameters of flight training subsets 
according to get the plane three-dimensional trajectory and attitude data, in order to 
carry out the maneuver criterion standard establishment, flight regimes intelligent iden-
tification, adaptive flight quality assessment.

3.1 � Establishment of flight maneuver criteria

Flight parameter data in flight training data comprehensively record flight training sub-
jects and content, flight maneuver data of aircraft and aircraft control data, etc., with 
abundant, authoritative, objective and true data accumulation. Flight maneuver is the 
basic element of flight training unit and the key index of flight assessment, and a single 
flight training includes several flight regimes that need to be assessed. Aimed at train-
ing model, combining with the aircraft maneuver characteristics and flight instructor 
expert experience, based on the maneuver of the aircraft flight parameters data sets, a 
comprehensive combing to identify flight regimes of classification methods and stand-
ards requirements, key flight maneuver set, put forward the classification standard, the 
index requirements of flight regimes, lay the foundation for flight gesture recognition 
and evaluation.

3.2 � Intelligent identification of flight maneuver

In the mining analysis and application of flight training data, the traditional algorithms 
generally have some problems, such as low recognition rate of flight maneuver, low reso-
lution of quality evaluation and low differentiation of evaluation. Deep learning meth-
ods based on deep neural network have been widely used in feature extraction of big 
data. In order to give full play to the feature extraction ability of neural network and 
make the deep neural network pay attention to the timing characteristics of collected 
flight maneuver signals and adaptively extract features from them, based on deep resid-
ual convolution, a deep variational auto-encoder network is constructed to realize flight 
maneuver recognition, which is expected to fill the gap of the lack of effective mining 
and analysis methods for flight training data.
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3.3 � Adaptive evaluation of flight quality

On the basis of efficient completion of automatic identification of flight regimes, 
according to the flight maneuver and flight sorties two levels, combined with the 
proposed maneuver classification criterion index system and deep variational auto-
encoder network, a multi-view fusion maneuver scoring algorithm based on varia-
tional auto-encoder feature compression network and adaptive dynamic time warping 
was implemented.

4 � Flight training maneuver library
4.1 � 4.1 Criterion standard

Flight parameters derived from different aircraft components, points belong to dif-
ferent hardware management system, causes the tend to have different sampling fre-
quency and scope of said, after data preprocessing is needed to input variables of the 
model, such as neural networks as the depth at the same time also ensures network in 
training can give equal importance to different parameters. Parameter types include 
Boolean switching variables, Continuous variables, Discrete variables and Angle vari-
ables, so data preprocessing includes resampling, normalization and slicing. Firstly, 
the sampling frequency of fast variable parameters and slow variable parameters is 
unified by down-sampling and over-sampling techniques. Then, according to the 
physical characteristics of each parameter, the upper and lower bounds of its theoret-
ical amplitude are determined, and the input parameters of the model are normalized 
to the same numerical range by means of amplitude scaling, which is usually [0,1] or 
[− 1,1]. This process can significantly improve the learning efficiency and prediction 
accuracy of the model. In the slicing process, the entire flight sorties with overlap 
are divided into multiple segments to ensure that the input samples of the segmen-
tation network have the same time sequence length. Finally, the output sequences 
obtained are spliced and combined to obtain the output results of the whole flight 
sorties. When only a few training samples are available, data enhancement is essential 
to make the network as invariant and robust as possible.

4.2 � The three‑dimensional trajectory reproduction

Due to the increasing intensity of flight training and stronger maneuverability of 
flight, the corresponding flight regimes cannot be accurately identified only by ana-
lyzing flight parameters However, 3d trajectory reconstruction can reproduce the real 
flight trajectory in flight sortals by observing the real-time changes of flight trajec-
tory, supplemented by the variation trend of main flight parameters, flight regimes 
and their starting and ending moments can be accurately, real-time and intuitively 
identified.

The three-dimensional position of an aircraft is determined by and only by lon-
gitude, latitude, and altitude. Therefore, the flight parameters of longitude, latitude 
and barometric height in flight sorties are extracted as x, y and z coordinates respec-
tively to draw scatter plots in three-dimensional space. In order to obtain a smooth 
3D trajectory, the moving average method is used to smooth the 3D coordinates of 
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the aircraft at each time point. By adding new and old data one by one in order to cal-
culate the average value, the moving average method eliminates accidental variation 
factors and achieves the effect of smoothing the curve.

After obtaining the overall three-dimensional trajectory of the aircraft, we expect to 
observe the trend of the flight trajectory with time. Therefore, the way of sliding win-
dow is adopted to draw the flight track of the aircraft in the window [t, t + 100] at time 
t. With the change of time t, the window continues to move along the time axis, and 
the flight path of the aircraft changes at the same time, realizing the real-time change 
of the flight path, which is more conducive to the identification of flight regimes. 
In order to realize intuitive and accurate judgment of flight regimes by combining 
dynamic 3D trajectory reconstruction and real-time flight parameter data, flight his-
tory tracing software is built, as shown in Fig. 1. The interface is mainly divided into 
time-of-flight area, dynamic 3D trajectory area, real-time flight parameters area and 
interaction area. The time of flight area is located at the top of the interface, showing 
the running time of the flight track. The dynamic 3D trajectory area is located at the 
left end of the interface, where the dynamic three-dimensional trajectory of flight at 
different moments is displayed as time changes. By dragging the mouse position, you 
can show the 3D flight track from different angles for further maneuver analysis and 
judgment. The real-time flight parameter area is located on the right side of the inter-
face, which dynamically displays six major flight parameters highly correlated with 
flight regimes at that time. By analyzing the real-time flight parameters, the flight 
regimes can be more accurately mined. The interaction area is located at the bottom 
of the interface and contains two control buttons "Stop" and "Start", which are used 
to control the pause and start of the flight history backtracking algorithm. The flight 
history tracing interface can be used to analyze and trace any historical flight sorties, 
and then build flight maneuver database, which lays a foundation for the establish-
ment of classification model.

Fig. 1  Flight history tracing interface
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4.3 � Flight regimes to be identified

As shown in Table 1, there are a total of 21 categories of flight regimes to be identified, 
which are divided into three categories: take-off and landing routes, basic regimes and 
stunt regimes.

5 � Depth variational auto‑encoder maneuver recognition model
In the mining of flight training data, the traditional algorithms rely on expert experience, 
the recognition rate of flight maneuver is not high, and the model generalization ability 
is poor. Deep learning algorithm based on convolutional neural network improves the 
accuracy and generalization ability of recognition model in a data-driven way. However, 
the traditional classification and recognition model is aimed at a single category of sam-
ples, and it still needs the help of expert knowledge to classify specific maneuver sam-
ples, so it cannot process the flight data containing multiple types of flight regimes. In 
this paper, point-by-point prediction was made based on the time sequence characteris-
tics of the flight parameters in multiple time series, and a point-by-point maneuver rec-
ognition network based on the depth variational auto-encoder network was constructed 
to perform intelligent segmentation of flight regimes in the complete sorties.

5.1 � Variational auto‑encoder

variational auto-encoder is a kind of considering the generated model derived from the 
hidden variable approximation, it includes coding device network qφ(z|x) and decoder 
network pθ (x|z) , as shown in Fig.  2. Where, x is the visible variable of input sample 

Table 1  Flight regimes to be identified

Traffic pattern Basic maneuver Stunts

Taxi straight ahead Level flight Hover Pull-up turn

Slide turn Rising; Spiral Sharp rise turn

Running off Glid Spiraling down Rool

Rising from the ground Turn Subduction Rising roll

Turn to the Jump Half a roll back

Landing; Lazy eight

Fig. 2  Variational auto-encoder
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features, and z is a series of unobserved hidden layer variables. The deep variational 
auto-encoder network uses variational inference theory and stochastic gradient descent 
principle to train the network. The encoder compresses the raw data into a low-dimen-
sional space so that the visible variable x maps to the continuous hidden variable z. The 
decoder uses hidden layer variables to generate data and uses hidden variable z to recon-
struct the original data x. Depth variation since the coding network distribution with 
depth of the neural network structure encoder qφ(z|x) and decoder network pθ (x|z) , 
thus to extract the characteristics with abundant information of hidden layer.

According to prior assumptions, the implicit variable z is constrained to be normally 
distributed pθ (z) ∼ N (µ, σ) , that the model learns the distribution of input data. But the 
marginal likelihood function of distribution is difficult to solve. According to the vari-
ational theory, the lower boundary of the marginal likelihood function is taken as the 
objective function. Given the approximate posterior qφ(z|x) , variational since coding 
network loss function is shown by

where Eq(z|x) is the expect under the posterior distribution qφ(z|x) , DKL is the KL diver-
gence between the approximate posterior qφ(z|x) and the prior distribution pθ (z) of the 
potential variable z, which in used to measure the gap between approximate posterior 
and prior distributions. The greater the KL divergence value, the greater the difference 
between the two distributions.

5.2 � Deep variational auto‑encoder maneuver recognition network

For the multivariate time series in the flight process, the depth variational multivariate 
variational auto-encoder network is constructed, as shown in Fig. 3. It can be divided 
into two parts: variational auto-encoder feature extraction and multiple time series seg-
mentation. For input of multivariate time series x ∈ Rl×n , where l is the length of the 
time series, n is the number of flying parameters entered.

Firstly, the hidden layer features of flying parameter are extracted by deep variational 
auto-encoder network x ∈ Rl×z , where z is the dimension of hidden layer features, let the 
features extracted can be standardized without redundancy, which is conducive to fur-
ther flight maneuver sequence segmentation. Then, convolution and down-sampling are 
carried out to encode the hidden layer features as high-level features with temporal rela-
tions. Finally, deconvolution and up-sampling are performed on the high-level features 
to output the sequence prediction category probability vector ŷ ∈ Rl×1 . The classifica-
tion error is computed by the sequence prediction category probability vector ŷ ∈ Rl×1 
and the one-hot encoding vector of sequence real class y ∈ Rl×1 together. Combined 
with classification error and reconstruction error, the model parameters are updated 

(1)

L(x) = Eq(z|x)[log pθ (x|z)]

− Eq(z|x)[log qφ(z|x) + log pθ (z)]

Eq(z|x)[log pθ (x|z)]

− DKL(qφ(z|x)||pθ (z))

(2)DKL(p||q) = −

∫

x

p(x)ln
q(x)

p(x)
dx
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iteratively by gradient descent method to determine the final network. The specific net-
work structure and parameters are shown in Table 2.

5.3 � Loss function and model training

The loss function of the model is divided into two parts: reconstruction error and clas-
sification error. For variational auto-coding networks, we make the minimum mean-
square error between the decoder output x̂ ∈ Rl×n and the original input x ∈ Rl×n as 
small as possible to ensure that no information is lost in the extracted hidden variables. 
At the same time, in order to make the approximate posterior of hidden variables close 
to the real prior, the KL divergence between them should be minimum. Therefore, the 
reconstruction error can be expressed as

where µ and σ are the mean vector and variance vector output by encoder g respectively.
In order to improve the accuracy of classification error, the predicted category should 

be consistent with the label as much as possible. The cross entropy loss function is 
adopted as

(3)

Lrecon = LMSE(x,
⌢
x)− LKL

= −
1

nl

l
∑

i=1

n
∑

j=1

(xij −
⌢
xij)

2 − KL(N (µ, σ),N (0, 1))

Fig. 3  Deep variational auto-encoder recognition network
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where pij represents the probability of class J maneuver predicted by the model at 
moment i, and yij represents the real flight maneuver performed at moment i. Therefore, 
the total loss function of time series segmentation is the sum of reconstruction error and 
classification error, as shown by

Other model training Settings are as follows. All network parameters are initial-
ized by kaiming initialization. The number of training samples per batch was 512. 
The total loss of time series segmentation is taken as the objective function, and the 
gradient of the objective function about the weight is calculated by the back propa-
gation strategy, and the network weight is updated in the opposite direction of the 
gradient. The random gradient descent (Adam) optimizer was selected, and the ini-
tial learning rate was 0.1, the exponential decay strategy was used to attenuate the 
learning rate, and the decay rate was selected as 0.95. The model parameters were 
saved after 100 rounds of training.

(4)LCE = −

l
∑

i=1

K
∑

j=1

yij × log
epij

∑K
k=1 e

pij

(5)Lseg = Lrecon + LCE

Table 2  Hyper parameter setting of network

Name Structure Parameter

Encoder Connection layer Input: 22, output: 128

Connection layer Input: 128, output: 64

Connection layer Input: 64, output: 10

Parameters of the split Split the mean and variance Input: 10, output: 2*5

Heavy parameterized Compute hidden layer variables Input: 2*5, output: 5

Decoder Connection layer Input: 5, output: 64

Connection layer Input: 64, output: 128

Connection layer Input: 128, output: 22

Down-sampling Convolution layer Convolution kernel size: 3
Convolution kernel number: 64
Fill a null: 1

Pooling layer 2 × 2

Convolution layer Convolution kernel size: 3
Convolution kernel number: 128, Fill a null: 1

Pooling layer Pooling of nuclear: 2 × 2

Up-sampling Transpose convolution layer Convolution kernel size: 2
Convolution kernel number: 64
Step away from: 2

Convolution layer Convolution kernel size: 3
Convolution kernel number: 64
Fill a null: 1

Transpose convolution layer Convolution kernel size: 2
Convolution kernel number: 16
Step away from: 2

Convolution layer Convolution kernel size: 3
Convolution kernel number: 1
Fill a null: 1
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5.4 � Flight data preprocessing

Collect K = 21 flight parameters (such as heading Angle, pitch Angle, barometric height, 
etc.) within multiple flight sorties. It is spliced into a multiple time series of L × K, where 
L is the total time of the series. In order to speed up the convergence process of the 
model and improve the calculation speed of the network, the overall statistical indica-
tors of each flight parameter are calculated respectively and the overall normalization 
process is carried out so that the value of each parameter is about 1. Finally, it is divided 
into training set and test set in the ratio of 6:4.

Then, to generate training samples, resampling the training set is performed. In order 
to ensure consistent model input size, a sliding window with a fixed size Lt was used to 
traverse the whole training set and divide the time series into several sub-samples. At the 
same time, in order to collect a sufficient number of samples to meet the requirements 
of model training, the whole time series is traversed with a step size of It. So, for the time 
series with points L, the sample number N obtained by resampling is shown by

5.5 � Model testing process

In the test phase, the sequence to be predicted was truncated into several sub-sequences 
whose length met the network input length Lt, and each sub-sequence was input into 
the maneuver recognition network to obtain several prediction sub-sequences. Then the 
prediction sub-sequence is spliced to obtain the point-by-point prediction label of the 
whole flight sortie. Finally, the boundary judgment is carried out to extract each flight 
maneuver segment of flight sorties as the output result. The test process is shown in 
Fig. 4.

The identification accuracy of network on flight maneuver types and maneuver start 
and end times has a significant impact on the identification results of the whole flight 

(6)N = floor

(

L− Lt

It

)

+ 1

Fig. 4  Test procedure
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sortie. Therefore, this paper adopts three types of evaluation indicators to evaluate the 
model, which are described as follows.

The Intersection-over-Union refers to the ratio of intersection and union between 
the predicted result and the real tag, and measures the similarity between the predicted 
sequence and the real tag sequence, as shown by

where Ij is an indicator function used to indicate whether there is an element point 
belonging to maneuver j in the sample sequence. pj indicates that the maximum prob-
ability of output prediction is the number of points of maneuver j, and yj is the number 
of points that are truly labeled as maneuver j. I(·) and U(·) represent the intersection and 
union of pj and yj respectively, and C represents the total number of categories. Overall 
accuracy refers to the proportion of correctly predicted points outputted by the network 
to all sequence points, as shown in Formula (9).

where P indicates the maneuver corresponding to the maximum probability predicted 
by the output.

The F1 score also focuses on the overall prediction accuracy of the model and the bal-
ance between different categories. It is the harmonic mean of accuracy rate and recall 
rate, and its value ranges from 0 to 1, as shown in Eq. (10). The closer the value is to 1, 
the stronger the model performance is.

The evaluation results of overall accuracy, intersection ratio and F1 score are shown 
in Table 3. Among them, the training results of all indicators are close to 100%, and the 
overall accuracy of the model is 92.76% when the model is run in the test set, indicat-
ing that the model can identify flight regimes well. The intersection ratio of the test is 
0.7354, indicating that the recognition of the start and end moments of flight regimes is 

(7)IoU =
1

∑C
1 Ij

C
∑

j=1

Ij ×
I(yj , pj)

U(yj , pj)

(8)Ij =

{

1, if I(yj , pj) > 0
0, if I(yj , pj) = 0

(9)acc =

∑

y ◦ p

Lt

(10)F1 - score =
1

C

C
∑

j=1

2
∑

yj ◦ pj
∑

yj +
∑

pj

Table 3  Model test results for flight regimes recognition

Indicators Training results Results 
test 
results

Overall accuracy 0.9992 0.9276

IoU 0.9885 0.7354

F1 score 0.9953 0.5362
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basically correct, but there is still room for improvement. The recognition accuracy of 
some categories is not high, which is related to the quality and data size of tags. More 
high-quality flight data and tags need to be added to train better classification models.

6 � Flight quality assessment algorithms
Due to the high maneuverability and complex and changeable regimes of military air-
craft, the flight quality evaluation of military aircraft lacks reasonable measures. The 
existing quality evaluation largely depends on the expert experience of flight instructors, 
so it is not highly differentiated in practical application. At the same time, the highly 
nonlinear mutation between multiple flight regimes interferes with the quality evalu-
ation of the whole flight envelope. In this paper, a flight maneuver quality evaluation 
algorithm based on deep variational auto-encoder network is proposed to eliminate 
redundancy of contextual maneuver information in the whole flight scene, and a scoring 
rule combining global feature and local feature is constructed to realize the comprehen-
sive evaluation of flight maneuver quality from multiple perspectives.

6.1 � Standard maneuver base library is established

In order to realize the maneuver quality assessment of different flight categories, it is 
necessary to select the corresponding standard maneuver datum and establish the 
standard maneuver benchmark library, which can be used as the reference datum of 
flight regimes and guide the threshold setting of subsequent scoring rules. The estab-
lishment process of the standard maneuver reference library is as follows: Combine the 
flight training outline of the designated aircraft type with the experience and knowledge 
of the flight experts, the relevant standard flight maneuver items are selected from the 
rich historical flight data, and the typical standard maneuver database is established. 
The relevant standards include flight parameter standards and three-dimensional trajec-
tory standards of various flight regimes. The criteria for flight parameters include entry 
speed, exit speed, takeoff Angle, time, altitude, intake pressure and other flight param-
eters. The 3D trajectory standard is used to judge whether the 3D trajectory of flight 
maneuver conforms to the maneuver description and whether its smoothness meets the 
requirements.

According to the above standards, some standard data of each type of flight regimes 
are extracted from the flight history data, and the start and end times of the regimes are 
recorded, which are included in the standard regimes reference base.

6.2 � Variational auto‑encoder feature compression network

The flight environment is complex when an aircraft enters a maneuver, and the flight 
maneuver parameters monitored by airborne sensors contain variables such as space–
time coordinates and state parameters. The variables are of various types and vary in dif-
ferent ranges, and there are huge differences among them. In addition, when the aircraft 
is performing the maneuver, the collected signals show the same or opposite trend of 
change, and there is highly jumbled information among the feature dimensions. Direct 
use of original signals to evaluate flight quality will cause serious inductive bias and can-
not be applied to the actual flight environment. Its specific performance is as follows:
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1.	 The value range of different dimensions varies greatly, which makes the evaluation 
model focus on the dimension with a larger value range. For example, the altitude of 
air pressure ranges from 0 to 2500 m, and the elevation angle ranges from 0 to 180°. 
When measured against standard maneuver, the distance depends mainly on baro-
metric height and ignores the influence of pitch angle.

2.	 The original value distribution is easy to sample to extreme values, which will lead to 
low or high ratings of highly or lowly quality regimes.

3.	 Information redundancy or correlation between dimensions is high, and the influ-
ence of some flight parameters on maneuver quality is ignored.

In order to reduce the impact of the above problems on flight quality assessment, a 
depth variational auto-encoder network is constructed to constrain the distribution 
of hidden layer features, remove redundant information among features, standardize 
features of each dimension, make distance measurement calculation more reasonable, 
and improve the accuracy of scoring.

According to the variational auto-encoder principle described in Sect.  3.1, a vari-
ational auto-encoder feature compression network is constructed, as shown in Fig. 5. 
The network is divided into two stages: model training and feature compression Dur-
ing model training, the convolution layer is used to form the encoder of the model, 
and the multiple time signal input x is accepted and encoded to obtain the hidden 
variable z (z is constrained by KL divergence), which contains the characteristic infor-
mation of flight regimes for subsequent quality assessment tasks. Then, the decoder 
composed of deconvolution uses hidden variables to reconstruct the signal, and takes 
the mean square error between the reconstructed signal and the original signal as 
the loss function, and trains the network parameters of the encoder by minimizing 
the reconstruction error. The specific parameter Settings of encoder and decoder are 
shown in Table 4.

Fig. 5  Variational autoencoder feature compression network
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After the network training is completed, flight parameters are input to the encoder 
with fixed weights to obtain the hidden layer variables with normal distribution, so as to 
realize the standardization of features and eliminate redundancy, which is conducive to 
improving the accuracy of subsequent distance measurement.

6.3 � Adaptive dynamic time warping

After variational auto-encoder feature compression, the next step is to measure the dis-
tance between the compression features of the flight maneuver to be evaluated and the 
standard maneuver to measure the flight maneuver quality. Common Euclidean dis-
tance, Mahalanobis distance and cosine pair distance isometric measures can calculate 
the similarity between two time series. However, influenced by a variety of external fac-
tors during flight, the duration of similar regimes varies greatly and is difficult to predict, 
which cannot meet the requirements of the common distance measurement method to 
measure the object scale consistency. Adaptive dynamic time programming calculates 
distances by means of dynamic programming to find the best matching relationship 
between sequences. It allows sequence points to be mismatched after self-replication, 
can measure non-isometric sequences and is robust to noise. Therefore, this paper uses 
adaptive dynamic time planning algorithm to measure the similarity between the evalu-
ated maneuver and the standard maneuver.

Suppose that for two time-of-flight sequences X =  < x1, x2, …, xm > , Y =  < y1, y2, …, yn > , 
and the maneuver duration is m and n respectively, then the path after dynamic state 
interval planning is W =  < w1, w2, …,wk, …, wK > , and the calculation process of similarity 
between X and Y is as follows:

1.	 Construct matrix D with size n × m, and element dij = dist(xi, yj) of row I and col-
umn, where dist is the distance calculation function and Euclidean distance is usually 
used by

2.	 Dynamic path planning is used to search the shortest path from d11 to dnm from 
matrix D, and the search process must meet the following constraints:

(11)dist(xi, yi) =

√

√

√

√

n
∑

j=1

(xij − yij)2

Table 4  Parameter setting of variational autoencoder feature compression network

Name Structure Parameter

Encoder Connection layer; Input: 22, output: 128

Connection layer; Input: 128, output: 64

Connection layer; Input: 64, output: 10

Split parameters; Split the mean and variance; Input: 10, output: 2*5

Heavy parameterized; Compute hidden layer variables; Input: 2*5, output: 5

Decoder Connection layer; Input: 5, output: 64

Connection layer; Input: 64, output: 128

Connection layer; Input: 128, output: 22
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1.	 Boundary conditions:w1 = (1, 1), wK = (m, n). The speed of any flight may vary, 
but the start and end times match. The selected path must start at the lower left 
corner and end at the upper right corner.

2.	 Continuity: if wk-1 = (ak-1, bk-1), then the next point of the path wk = (ak, bk) need 
to meet (ak-ak-1) <  = 1 and (bk-bk-1) <  = 1. That is, you can’t match across a point, 
you can only align with your adjacent points. This ensures that each coordinate 
in X and Y appears in W.

3.	 Monotonicity: if wk-1 = (ak-1, bk-1), then the next point of the path wk = (ak, bk) 
need to meet (ak-ak-1) >  = 0 and (bk-bk-1) >  = 0. This restricts the W path to be 
monotonous over time to ensure that matching points do not intersect.

	 Combined with monotonicity and continuity constraints, the path of any grid 
point can only be selected in three directions. If the path W has passed the point 
(i, j), the next grid point can only be the following three cases: (i + 1, j), (i, j + 1) 
or (i + 1, j + 1), as shown in Fig. 6.

3.	 Search the shortest path from d11 to dnm in matrix D as the similarity of X and Y 
sequences. Therefore, the total dynamic time planning distance is shown by

where i = 1, 2, …,m; j = 1, 2, …, n; Ddtw(X,Y) represents the distance between sequence 
X and Y, xi and yj represent the points in sequence X and Y respectively, di,j(xi, yj) 
represents the Euclidean distance between the points xi and yj.

Computing all the paths in the entire matrix results in enormous time complex-
ity. In order to achieve fast and accurate flight maneuver evaluation, a fixed window 
is selected to limit the maximum distance of sequence offset. In addition, in order 
to suppress the phenomenon that abnormal differences at both ends of the sequence 
lead to too low dynamic time warping distance, an offset is selected to represent the 
maximum offset of the abnormal points at both ends of the sequence. Finally, for the 
flight maneuver sequence to be evaluated, the dynamic time planning distance is 

(12)Ddtw(X ,Y ) = di,j(xi, yj)+min











Ddtw(Xi−1,Yj)

Ddtw(Xi,Yj−1)

Ddtw(Xi−1,Yj−1)

Fig. 6  Path searching direction
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calculated with each standard flight maneuver of the corresponding category in the 
standard flight reference base for subsequent flight maneuver quality evaluation.

6.4 � Global–local information multi‑view fusion scoring rule

When evaluating flight maneuver quality, a reasonable scoring algorithm should take into 
account both the completion of all indexes and the completion of single specific indexes 
during flight. If all the indicators of flight regimes are above the standard, the weighted sum 
is carried out according to the quality of each indicator to obtain the overall score. However, 
if a single specific index does not meet the requirements, the final score shall not exceed the 
fixed score. This paper considers both global information and local information, and forms 
a set of multi-view fusion scoring rules based on global–local information to achieve multi-
view comprehensive scoring.

For a period of stay evaluation maneuver x ∈ Rl×n and k standard regimes of the same 
class {s1, s2, …, sk}, si ∈ Rli×n for i = 1,2,…k, where l and li represent the duration of flight 
regimes to be evaluated and each standard flight maneuver respectively, n is the total num-
ber of flying parameter. The normalized hidden layer features x ∈ Rl×z 和 {s1, s2, . . . , sk} , 
si ∈ Rli×z for i = 1,2,…k are obtained by inputting them into variational auto-encoder fea-
ture compression network, Where z is the independent feature dimension of the longi-
tude variational auto-encoder feature compression network after compression. Then the 
adaptive dynamic time planning algorithm is used to calculate the dynamic time planning 
distance of each standard maneuver and the maneuver to be evaluated in each dimension 
dz = {d1,z, d2,z,…dk,z}, where di,z = adist(si(; , z), x(; , z)) . Take the minimum value of k dis-
tances after calculation as the similarity measure between the maneuver to be evaluated 
and the standard maneuver benchmark in this dimension Dz = min(d1,z, d2,z,…dk,z).

According to the similarity measure between the maneuver to be recognized and the 
standard maneuver, the global–local information fusion multi-view comprehensive score 
is carried out. Two threshold vectors A and B were selected to divide the overall score into 
three ranges of 100 points, 60–100 points and 60 points. Considering global information, 
if the distance between the maneuver to be recognized and the standard maneuver datum 
in each characteristic dimension is less than the lower threshold a, the flying maneuver is 
regarded as 100 points. Considering local information, if there is a distance metric dimen-
sions is greater than the threshold is lower, then the maneuver is less than 100 points, if on 
the basis of the characteristic dimensions of distance is less than b, upper and lower bounds 
of the threshold is lower bound by each dimension scores more than threshold of the sum 
of allowance to decide, and assume that score with various dimensions exceed the thresh-
old is lower total surplus to a linear relationship. The larger the total margin, the lower the 
score; The smaller the total margin, the higher the score; When the total margin is 0, the 
score reaches 100 points. If the distance measure on a feature dimension is greater than the 
upper bound of the threshold, the maneuver is 60 points. The scoring rules are shown in 
Eq. (13).

(13)S =















100 if ∀i,Di < a

100− 40×
z
�

i=1

max(Di−a,0)
b−a

if ∃i,Di > a

60 else



Page 19 of 23Tian et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:21 	

After simplification, the final flight maneuver quality score can be expressed as 
Eq. (14):

As described above, the quality score is closely related to the choice of upper and 
lower thresholds. If the threshold value is too high, the algorithm tends to output higher 
scores, resulting in inflated scores; If the threshold value is too low, the algorithm is too 
strict and the overall score of flight maneuver quality is low. Therefore, reasonable selec-
tion of upper bound b and lower bound a of threshold is crucial to scoring results.

Firstly, considering the sparsity of the number of 100 scores, the lower bound of 
threshold b is determined by using the standard maneuver reference library. The adap-
tive dynamic time warping algorithm is used to calculate the similarity measure of each 
standard maneuver in the standard maneuver base and select their minimum value as 
the lower threshold. Since the flight parameters of standard regimes are very close to 
each other, the minimum value between them is taken as the lower bound of thresh-
old value, which not only ensures that the 100-point regimes meet the requirements of 
standard regimes, but also has a high sparseness. Secondly, the upper bound of thresh-
old a divides the boundaries of two intervals of 60 ~ 100 and 60 min. It is assumed that 
all kinds of flight regimes obey the Gaussian distribution, and the standard flight regimes 
are distributed near the mean of the Gaussian distribution. The maximum similarity 
measure between standard regimes in the standard maneuver base is taken as variance σ 
of gaussian distribution. According to the 3σ principle, the probability of flight maneuver 
at a distance of more than 3σ is almost zero. Therefore, 3 times of the maximum similar-
ity measure between each standard maneuver is selected as the upper bound of thresh-
old a to ensure the sparsity of 60-min flying maneuver. To sum up, the lower bound of 
threshold b and the upper bound of threshold a are given by

Combined with the above, the overall process of multi view fusion scoring algorithm 
based on global local information is shown in Table 5.

7 � Simulation results
Because the depth convolution auto-encoder imposes an independent and identically 
distributed a priori on the hidden layer features, the features after dimension reduction 
by depth convolution auto-encoder often approximately obey the standard normal dis-
tribution of independent and identically distributed, which can eliminate the scale differ-
ence between dimensions and is beneficial to the distance calculation between features.

When different dimensionality reduction dimensions are selected, it will affect the 
training effect of the network. When the dimension is too low, the feature informa-
tion is missing and the original signal cannot be reconstructed effectively; When the 
dimension is too high, redundancy inevitably occurs between dimensions, breaking 

(14)S = 100−min









40, 40×

z
�

i=1

max(Di − a, 0)

b− a









(15)
{

a = min(adist(si, sj) for i = 1, 2, . . . , k , j = 1, 2, . . . , k)

b = 3 ∗max(adist(si, sj) for i = 1, 2, . . . , k , j = 1, 2, . . . , k)



Page 20 of 23Tian et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:21 

the independence between different features and affecting the performance of the 
scoring model. Therefore, we tested the overall distribution of scores obtained under 
different feature dimensions to achieve super parameter optimization. By comparing 
the score distribution results under five groups of feature dimensions [5, 6, 8, 10, 12], 
when the feature dimension is greater than or equal to 10, the scores of some regimes 
obviously tend to be low segmentation, indicating that the auto-encoder model will 
produce some invalid dimensions at this time; When the feature dimension is less 
than or equal to 6, the score of some regimes obviously tends to be high segmenta-
tion, indicating that the network is difficult to converge and the feature discrimination 

Table 5  Overall process of scoring algorithm
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is insufficient. Therefore, the feature dimension selected by the final scoring model is 
8, as shown in Fig. 7.

8 � Conclusions
In this paper, a scheme of deep learning for accurate recognition of high maneuvering 
flight regimes in military flight is proposed for the first time. Make full use of the neural 
network, which has the characteristics of high invariance to the flight parameter data of 
multivariate time series, such as scaling, translation, tilt and other forms of deformation. 
Combined with the spatial mapping ability of variational auto-encoder, the flight maneu-
ver segmentation and accurate evaluation are realized. At the same time, it effectively 
solves the practical problem of scientific evaluation of training quality in flight training. 
Based on the accurate identification and quality evaluation of flight regimes, the concept 
of building a basic database of flight quality for flight cadets is proposed, and the in-
depth application level analysis and mining of flight training big data is expected to solve 
the specific engineering practical problems of the management department on specific 
air regimes, such as "whether to fly, how to fly quality, how to express and locate Flight 
points", It can fill the gap that the current military training lacks effective mining and 
analysis means for flight training data.

By establishing a comprehensive evaluation method system for flight quality of flight 
cadets, we can give play to the advantages of big data and analyze the overall law of flight 
training from multiple dimensions in follow-up research and practice. From the indi-
vidual dimension of flight cadets, comprehensively study and judge the technical matu-
rity curve formed by the factors such as technical maturity, stability and isolated regimes 
of a single flight Cadet during flight training, so as to provide auxiliary data support for 
the personalized and accurate training of flight cadets; From the group dimension of 
flight cadets, mine and analyze the flight training quality law of characteristic groups, 

Fig. 7  Distribution of typical regimes score (feature dim = 8)
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summarize and refine the advantageous flight training regimes and group training dif-
ficulties, form auxiliary data analysis and decision-making, and support the reform of 
flight training; From the dimension of flight instructors, systematically mine and analyze 
the overall flight quality, advantageous regimes and isolated regimes of flight instruc-
tors, summarize experience and avoid weaknesses through data, and support the overall 
improvement of teaching ability and level of flight instructors.
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