
Regression‑based beam training for UAV 
mmWave communications
Junjie Zhang1, Weizhi Zhong1*, Yong Gu1, Qiuming Zhu2 and Lulu Zhang1 

1  Introduction
The commercial deployment of millimeter-wave (mmWave) bands (27.5–28.35 GHz and 
37–40 GHz) has made mmWave communication a promising technology for fifth-gen-
eration (5G) and beyond systems [1, 2]. With its large bandwidth and high transmission 
rate, mmWave has become the most feasible way to enhance UAV-assisted communica-
tions [3–6]. Due to the high spatial path loss, mmWave communication systems usually 
utilize large antenna arrays and beamforming (BF) technology to acquire high transmit-
ting power gain [7]. However, due to the narrow beam of UAVs and their high mobil-
ity, maintaining beam alignment has become difficult, and accurate beam pointing has 
become a major challenge [8, 9]. Therefore, a fast and precise angular search is impor-
tant and necessary to obtain aligned beams between the receiver and transmitter during 
the initial access phase [10–13].

There have been many studies on initial beam search schemes. The exhaustive 
search algorithm demonstrates the best accuracy, but the considerable search time 
has made this method unacceptable for UAV-assisted communications [14–16]. To 
avoid brute force scanning, different kinds of solutions have been proposed. For 
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example, in [16], the authors proposed a hierarchical multiresolution codebook to 
lower training time. However, this method introduce a nonideal probability of estima-
tion error from some special angles. In [17], the authors developed two fast search 
procedures based upon the Luus Jaakola and Tabu methods. The authors in [18] 
designed an iterative search scheme over sectional subarrays. This method resembles 
a digital beamforming search scheme to reduce the discovery time. The authors in 
[19] proposed an efficient beam search scheme supported by the joint judgment tech-
nique. The authors in [20] presented an energy-efficient beam-alignment protocol to 
reduce power consumption. The authors in [21] gave a three-dimensional (3D) hierar-
chical codebook to estimate both the vertical and horizontal angles at the same time.

Considering the beam search in mmWave UAV communication scenarios, it is dif-
ficult to obtain a 3D aligned beam pair via a power measurement without any addi-
tional information. Due to the increasing complexity of beam searches in 3D dynamic 
environments, the use of ML or deep learning (DL) to address the problem has 
become promising.

In recent years, the application of ML/DL to beam search has received great atten-
tion. In [22], the authors used reinforcement learning to realize beam selection based 
on a ray tracing simulator (RTS), which generated mmWave channels with transceiver 
mobility. In [23], training data was generated by using RTS and aligned beam pairs 
were obtained on the basis of vehicle positions. These methods can only be applied to 
particular ground scenarios, such as the Internet of vehicles (IoV). Once the scenario 
changes, it is necessary to rebuild the training model and recollect the training data. 
In [24, 25], the authors investigated k-nearest neighbours (KNN) and support vec-
tor classifiers (SVC) to select the optimal configuration for the analog beamforming 
(ABF) network based on the estimated AOA and received powers. In [26, 27], the 
authors presented a Gaussian process-based ML scheme to achieve fast and accurate 
UAV position prediction to help complete beam selection. These methods require 
considerable prior messages to calculate the probability distribution function of tar-
get variables. To address these drawbacks, this paper aims to find an efficient method 
that can realize high-precision beam training in UAV scenarios. The major contribu-
tions and novelties of our work are summarized as follows:

(1)	 A fast 3D beam training strategy is proposed in this paper. This strategy utilizes 
special frames with a two-phase structure consisting of beam training and data 
transmission, and the linear regression (LR) model and novel beam patterns are 
presented in the corresponding phase.

(2)	 A special LR model is derived to replace the exhaustive beam search process, and 
the ML algorithm is applied to complete the fitting process. In addition, a novel 
beam pattern is designed based on the Fourier series method (FSM) to promote the 
formation of the LR model.

(3)	 Based on the new training model, a denoising autoencoder (DAE) is proposed to 
increase the signal-to-noise ratio (SNR). A neural network is applied to establish a 
mapping between the original data and noise data. The training data are employed 
as labels, which can help to obtain a denoising learning model.
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The remainder of this paper is organized as follows. Section  2 describes the system 
model of UAV communications. Section  3 introduces a fast 3D beam training model. 
Section  4 presents the DAE method. The simulation and test results are provided in 
Sect. 5. The conclusions are drawn in Sect. 6.

For notations, the matrix and vector are denoted by A and a , respectively. ‖a‖2 is the 
Euclidean norm of a , and AT and AH are the transpose and conjugate transpose of A , 
respectively.

2 � System model
Beam training is indispensable because of the narrow beams used in mmWave commu-
nications. UAVs need to obtain the aligned beams by beam training before establishing 
communication. When communication is interrupted by drastic changes in the UAV’s 
attitude and position, it is necessary to align the beams again [28, 29]. In this scenario, 
a uniform planar array (UPA) with a size of M ×M is equipped in both the base sta-
tion (BS) and mobile station (MS). The channel model between the BS and MS [30–32], 
denoted by H ∈ C

M2×M2 , can be expressed as

where q denotes the complex channel gain; θh and θv represent the horizontal and verti-
cal beam directions of the BS, respectively; θ ′h and θ ′v represent the horizontal and verti-
cal beam directions of the MS, respectively; and αBS(θh, θv) and αMS(θ

′
h, θ

′
v) are the array 

responses of the BS and MS, respectively. Furthermore, the array response of the BS can 
be defined as

where

and

Here, a ∈
{

h, v
}

 includes both the horizontal and vertical domains, φa is the AOA, � 
is the signal wavelength, dh and dv are the distances between the adjacent antenna ele-
ments in the horizontal and vertical directions, respectively, and αMS(θ

′
h, θ

′
h) can be 

formed in the same way.
The received signal can be modelled as

(1)H = qαMS(θ
′
h, θ

′
v)α

H
BS(θh, θv),

(2)αBS(θh, θv) = αBSh(θh)⊗ αBSv(θv),

(3)αBSa(θa) =
[

1, ejθa , . . . , ej(M−1)θa
]T

,

(4)θh =
2πdh

�
sin φh cosφv

(5)θv =
2πdv

�
sin φv .

(6)y =
√
PwH

Hcr + w
H
n,



Page 4 of 17Zhang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:18 

where P is the total transmit power; w ∈ C
MN×1 and c ∈ C

MN×1 are the combining and 
beamforming vectors, respectively; r is the transmitted signal; and n ∈ C

MN×1 is the 
complex white Gaussian noise with mean zero and variance σ 2.

3 � Methods section: beam training
3.1 � Training strategy

The UAV beam training process can be regarded as a problem of angle selection. How-
ever, the main challenge is how to obtain the angles without knowing the positions and 
attitudes of the BS and MS. In this paper, we design a fast beam training strategy to over-
come this problem. The strategy can be implemented by using the framework proposed 
in Fig. 1. It consists of the beam training phase and data transmission phase. In the beam 
training phase, the BS transmits training sequences to the MS at each time slot. At the 
same time, the MS performs power measurements for beam configuration and feeds the 
results back to the BS. For simplicity, this paper assumes that the channel between BS 
and MS is reciprocal. The beam patterns are shaped, and the power measurements yk are 
collected. The corresponding BF vectors for shaping the beam pattern are obtained by 
the proposed method in Sect. 3.2, and the beam directions can be achieved by θ = f (y) . 
In the data transmission phase, the BS and MS utilize their beam pairs obtained in the 
training phase to transmit data.

Figure 2 shows the traditional training strategy, which further maximizes the power of 
the optimal beam pair. However, our method uses θ = f (y) to simplify the search pro-
cess. The special beam pattern is described in Sect.  3.2, which can win the additional 
information that is beneficial for the training efficiency from the power measurements.

The regression model proposed in Sect.  3.3 is the key point of the proposed novel 
training strategy to fit the function θ = f (y) . The LR model is often adopted for its sim-
plicity; therefore, we improve θ = f (y) to an LR function, and the fitting process of the 
function is completed by using the ML algorithm in this paper.

For the traditional searching method, all beam patterns are consistent, but the beam 
directions are different. The optimal beam pairs can be obtained by maximizing the 
received power. However, our strategy utilizes novel training beams with additional 
angle information, which can improve the efficiency and accuracy of beam training.

Fig. 1  Conceptual framework
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3.2 � Specially designed beam patterns

In this section, we design the beam patterns to make θ = f (y) an LR function and fit it by 
the ML method with a large amount of training data. To complete the fitting process, the 
input parameter is designed as

It contains two power measurements 
∣

∣yk
∣

∣

2 and 
∣

∣yk+1

∣

∣

2 , where k represents the time slot. 
Since each time slot is very short, it can be considered that the channels of two adjacent 
measurements are almost the same. Thus, the input parameter is independent of the signal 
attenuation K  and other factors.

To make x and θ present a linear relationship, the denominator is designed as a constant 
C, and the numerator is designed as a linear function of θ as

where Z and b are both constants. Furthermore, 
∣

∣yk
∣

∣

2 and 
∣

∣yk+1

∣

∣

2 are modelled as

(7)x =
∣

∣yk
∣

∣

2 −
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2
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∣yk
∣
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∣
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∣
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Fig. 2  The traditional strategy versus proposed strategy
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where

It is difficult to design the BF vector that satisfies the beam patterns as in (9). Therefore, 
we quantize the spatial domain into multiple regions. The beam gain of each quantified 
region is determined by the sample value of (9). For convenience of explanation, an example 
is shown in Fig. 3. It describes the relationship between the horizontal direction and beam 
gain. A similar approach can be followed to estimate the beam direction.

Note that the numbers 3, 4, ……, 10 in Fig. 3 only show a simplified distribution of beam 
gain. Using (7) to calculate x in all beam regions, we find that each θh of its correspond-
ing region correlates to a specific x . Furthermore, we find that x and θh obey a monotonic 
relationship, which is a perfect relationship for the fitting function f (x) mentioned in this 
section utilizing ML.

The whole beam region in Fig. 3 is divided into several parts, and the BF vector c for the i 
th region can be obtained by using the FSM [33]

(9)











�

�yk
�

�

2 =
1

2
zθ + b1

�

�yk+1

�

�

2 = −
1

2
zθ + b2

(10)
{

b1 + b2 = C

b1 − b2 = b
.

(11)
ci(M × (mh − 1)+mv) = e−j(X(mh)ωh0(i)+Y (mv)ωv0(i)).

sin(ωh0(i)X(mh))

πX(mh)
.
sin(ωvb(i)Y (mv))

πY (mv)
,

Fig. 3  Ideal beam patterns for the training data



Page 7 of 17Zhang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:18 	

where (mh,mv) is the serial number of antennas, X(mh) is the ratio of the antenna 
abscissa to horizontal separation dh , Y (mv) is the ratio of the antenna ordinate to vertical 
separation dv , (ωh0,ωv0) is the centre of the beam region in the horizontal and vertical 
domains, and ωhb and ωvb are the widths from the centre to the horizontal and vertical 
boundaries, respectively. The BF vector ck is the sum of all ci values and is defined as

Since the actual beam patterns generated by (12) cannot be exactly the same as those 
in Fig. 3, it only needs to ensure that the distribution of the beam gain meets the expec-
tation. The relationship between the input and output is not perfectly linear; therefore, 
ML is adopted to obtain an accurate regression model.

3.3 � Polynomial regression model

ML provides a variety of regression algorithms. Polynomial regression is a kind of LR 
model and has a wide range of applications since any function can be approximated by a 
polynomial. Compared with the basic linear regression, it is suitable for nonlinear func-
tions. In this paper, we utilize polynomial regression to fit f (x) , which can be expressed 
as

where x and βn are the feature and coefficient, respectively. The loss function of this 
model is

where X = [1, x, x2, . . . , xn] and β = [β0,β1, . . . ,βn] . In this paper, power measurements 
are saved as x in the dataset. The beam direction θ is used as the training label for the 
regression. By minimizing the loss function, the coefficients βn can be obtained.

The training result of the ML method depends on both the learning model and the 
dataset. When the handcrafted feature of (7) is applied, the search strategy is shown in 
Algorithm 1.

(12)ck =
∑

ci.

(13)f (x) = β0 + β1x + β2x
2 + · · · + βnx

n,

(14)J(β) =
1

2
(Xβ − Y)T(Xβ − Y),
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In Algorithm  1, A1 and A2 are the two BS beams shown in Fig.  3. A3 and A4 are 
obtained by exchanging the parameters of θh and θv . The beam B of MS is obtained in 
the same way. According to the description in Sect. 3.2, two measurements can deter-
mine one beam angle, θh or θv . For 3D beams, the four angles of the beam pair can 
be obtained with eight measurements. As described in Algorithm  1, the optimized 
searching strategy can obtain all beam angles only through six measurements, while 
the traditional strategy can only complete the searching process of the first layer over 
the same time. Since the feature used by Algorithm 1 is a one-dimensional variable, 
the polynomial regression of one indeterminate model is sufficient. In the initial 
stage, the function f (x) is designed as an ideal linear function, therefore, the esti-
mated function curve is close to a straight line.

The features used in Algorithm 1 are artificially designed. The error mainly comes 
from the difference between the actual and ideal beams. Taking the estimation of the 
horizontal angle θh as an example, the ripples of the non-ideal beam in the horizontal 
domain result in different horizontal angles with the same received power. In addi-
tion, the ripples in the vertical domain result in different power values with the same 
horizontal angle. Note that the error affects the direction of the aligned beam, but the 
main lobe can still cover the actual angle region.

Algorithm  1 can be used to verify the rationality of the proposed beam design 
method. On this basis, the features can be replaced by the original power measure-
ments. As shown in Algorithm 2, four measurements are taken as characteristic vari-
ables, and the horizontal and vertical angles are taken as labels. High-dimensional 
features can fit more complex data relationships. When there is an error between the 
actual beam and the ideal beam, our method can better learn the gain distribution of 
the actual beams.
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•
•
•

4 � Noise reduction
Since inaccurate measurements caused by a noisy environment lead to incorrect estima-
tions, a recurrent neural network (RNN)-based DAE is proposed in this paper. Figure 4 
shows the framework of the neural network.

The DAE is composed of an encoder and a decoder. The encoder consists of one gated 
recurrent unit (GRU) layer with 512 units, one GRU layer with 256 units, one dense 
layer with 256 units, and one dense layer with 32 units. The structure of the decoder 
is designed in a similar way. Note that the simplest DAE comprises only a number of 
dense layers. To better process the sequence data, we add GRU layers to the encoder and 
decoder.

In Fig. 5, the neural network establishes a mapping between the original data and noisy 
data. The original data are the beam direction values while the UAV is working. The 
noisy data are assumed to be obtained by adding Gaussian noise to the original data. We 
first acquire the low-dimensional feature by using the encoder to encode the noisy data, 

Fig. 4  Framework of the DAE



Page 10 of 17Zhang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:18 

and then we restore the feature into the corresponding output by utilizing the decoder. 
By employing the training data as labels, we can obtain a denoising learning model.

5 � Discussion and results section
In this section, we provide numerical simulations to verify the effectiveness of the pro-
posed strategy. The beam pattern, regression model and DAE are the main factors that 
affect the performance of beam training. This paper mainly analyses the efficiency of 
these main factors. The simulation parameters are set as follows:

Parameters Value

Array elements M 21

Q 1

Power P 30 dBm

dh �
/

2

dv �
/

2

5.1 � Beam pattern

The beam pattern is very important for the formation of the LR model, as it can add 
additional information to the power measurement. Therefore, the actual beam needs to 
be designed as an ideal beam with the patterns proposed in Sect. 3.2. Figure 6 shows the 
actual beam patterns formed by the proposed BF method in Sect.  3.2, where 
θa ∈ [−π

/√
2,π

/√
2] . From Fig. 6a, the designed beam pattern can satisfy the require-

ment of Fig. 3. Figure 6b shows the coverage area of the beam through the top view. The 
variations in the beam gain with angles θh and θv are illustrated in Fig. 6c and d, respec-
tively. The simulation result verifies that the beam gain is not affected by θv but changes 

Fig. 5  Process of the DAE
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with θh . However, due to the limited number of array elements, there are ripples in the 
beam pattern. Generally, the ripples can be reduced by adding windows, but they can 
increase the beam width and reduce the beam gain. This makes the simulation result 
more susceptible to noise interference. The ripples can also be reduced by increasing the 
number of array elements. The beam pattern with different array elements is shown in 
Fig. 7. The variance between the actual beam and ideal beam is displayed at the top right 
of the picture. It can be found from the simulation results that the more array elements 
there are, the closer the beam pattern is to the ideal one.

5.2 � Polynomial regression

In this section, the attitude of the UAV is simulated by changing the AOA and AOD. 
The power measurements with different angles are collected as the input of the train-
ing model. The actual angle is set as the label. To ensure the reliability of the proposed 
model, the sampling angle values uniformly cover the entire beam width.

To verify the reliability of polynomial regression, the beam proposed in Fig.  6 is 
applied to Algorithm  1. In this paper, we use the normalized mean squared error 
(MSE) to evaluate the accuracy of the proposed model and analyse the influence of 
parameters. In Fig. 8, the degree value represents the highest power of the polynomial 

Fig. 6  Beam patterns of the proposed method
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in the polynomial regression (PR) model. The simulation results show that when the 
highest power of the polynomial is from 1 to 5, the MSE is relatively low. The simula-
tion results verify that the function f (x) can be well approximated as a linear model, 
and it is consistent with the design value of Sect. 3.2. It is worth mentioning that noise 
has a great impact on the performance.

Fig. 7  Beam patterns of different elements

Fig. 8  MSE of the polynomial regression
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Figure 9 shows the fitting performance of different regression models. The dotted 
line is the actual curve, while the solid line is obtained by the PR model. Notably, the 
designed beam pattern is adopted in the simulation. The simulation result proves that 
the designed beam is beneficial for promoting the accurate fitting of the regression 
model. However, the difference between the actual pattern and the ideal pattern may 
lead to different outputs with the same input, which would increase the training error.

A comparison of the three regression models shows that the PR model has the low-
est MSE. This means that the PR can obtain reliable results when the training dataset 
is nonideal, and the KNN algorithm can deal with both the classification and regres-
sion problems simultaneously. The algorithm uses the mean value of several neigh-
bour points as the predicted value of the model. The predicted value of the decision 
tree depends on the mean value of the sample points. The regression tree divides the 
feature space into several units, and each division unit has a specific output. For the 
test data, we need to group it into a unit according to its characteristics and then 
search the corresponding output value. Both regression models can handle low-
dimensional data, but they are not as effective as polynomial regression in dealing 
with the dataset, as in this paper.

To verify the influence of the original features on the regression model, we compare 
the MSE of Algorithm 1 and Algorithm 2 in Fig. 10. As shown in Fig. 10, the regres-
sion method employing original features can effectively conduct angle estimation, 
and the estimation error is much smaller than that of the regression method using 
handcrafted features. In addition, the number of array elements has almost no effect 
on the estimation error because the error of beam gain caused by the number of array 
elements does not affect the distribution characteristics of the training data.

Due to the introduction of the regression function and designed beam, only a small 
number of time slots are needed to complete the beam configurations. In our pro-
posed training strategy, the reduction of training slots means an increase in the trans-
mission time and data rate.

Fig. 9  MSE of different regression models
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Figure  11 shows the data rates of our method and hierarchical search when the 
beam configuration is finished. As shown in Fig. 11, in the conventional method, if the 
hierarchical beam search only performs one layer training (S = 1), then the configura-
tion time is less. However, the data rate is reduced as the beam gain of the first layer 
is too low. With an increase in the number of training layers (S = 3), the beam gain 
increases. However, the time slots for data transmission are reduced with increasing 
training time. In contrast, the training strategy proposed in this paper not only has a 
short training time but also uses a narrow beam with high gain for data transmission. 
Therefore, the proposed method is more effective and suitable for UAV scenes than 
conventional approaches.

Fig. 10  The influence of the original and hand-crafted features

Fig. 11  Data rate of the different search methods
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5.2.1 � DAE

To evaluate the effectiveness of the DAE model for noise reduction, we compared the 
normalized MSE of different algorithms with the same SNR. We take the noisy signal 
waveform as the input of the DAE and the actual waveform as the training label. To 
prevent the neural network from overfitting, the input of training data should include a 
large number of waveforms with different amplitudes and noise powers.

Figure 12 shows that the DAE could greatly reduce the error caused by noise. There-
fore, our proposed beam search strategy could obtain aligned beams with less error. 
The MSE of the exhaustive search represents the error between the maximum radiation 
direction of the aligned beam and the actual direction. To obtain the minimum MSE of 
exhaustive search, we assume that there is no mismatch. The simulation result proves 
that the proposed strategy can achieve nearly the same performance as the exhaustive 
search but consumes much less training time.

6 � Conclusion
In this paper, a regression-based beam training strategy for UAV mmWave communi-
cation systems is proposed. Specifically, we formulated the training problem as an LR 
function and fitted it with the ML method. A special beam pattern has been proposed 
to promote the fitting of the function by providing additional information. Moreover, 
an RNN-based DAE has been introduced to reduce the impact of noise on the proposed 
model. The simulation results proved that the proposed strategy can effectively reduce 
the beam search overhead while guaranteeing the matching accuracy of the beam align-
ment requirements. In the future, the performance of the proposed beam search strat-
egy will be evaluated on an actual UAV platform.

Abbreviations
UAV: Unmanned aerial vehicle; mmWave: Millimeter wave; ML: Machine learning; DAE: Denoising autoencoder; BF: 
Beamforming; DL: Deep learning; KNN: K-nearest neighbour; SVC: Support vector classifier; AOA: Angle-of-arrival; FSM: 
Fourier series method; SNR: Signal-to-noise ratio; UPA: Uniform planar array; BS: Base station; MS: Mobile station; GRU​: 
Gated recurrent unit; MSE: Mean squared error.

Fig. 12  MSE of the DAE
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