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1  Introduction
Presently, the noncooperative receiver in many applications requires a wide receiving 
bandwidth to achieve a high interception probability [1, 2]. However, the typical non-
cooperative receiver using uniform sampling based on direct Nyquist rate digitalization 
is difficult to realize the wideband receiving because of the analog-to-digital converter 
(ADC) sample rate limitation [3].
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In recent years, several sampling theories are proposed to overcome the ADC limi-
tations, such as the sample rate and the saturation [4, 5]. In the field of sample rate, 
the analog-to-information (A-to-I) theory is a novel approach to break the ADC 
sample rate limitation [6]. For instance, the random sampling scheme based on the 
compressive sensing (CS) is a typical A-to-I theory, and several wideband CS receiv-
ing structures are designed [7, 8]. Besides, the signal recovery and processing meth-
ods based on the corresponding schemes are proposed [9, 10]. Then, another A-to-I 
method named as the modulated sampling scheme is proposed, and the Nyquist fold-
ing receiver (NYFR) is designed based on this scheme [11, 12]. Compared with ran-
dom sampling scheme or the modulated wideband converter (MWC) using multiple 
clocks [7], the modulated sampling scheme only requires a single channel to achieve 
wideband receiving and it preserves the signal structure [12], which means the receiv-
ing resource of the modulated sampling scheme is low and its output can be processed 
easier. Based on the modulated sampling scheme, the improved NYFR structures, the 
output characteristics and the corresponding signal processing are investigated [13–
17]. The modulated sampling scheme uses a non-uniform modulated radio frequency 
(RF) sampling to realize wideband receiving. The RF sampling is controlled by a local 
oscillator (LO) that contains a certain modulation type, and the non-uniform sam-
ple pulse train is generated by the LO. Usually, the typical LO modulation type of 
the modulated sampling scheme is sinusoidal frequency modulation (SFM) [12]. The 
intercepted signal with a high frequency in the wide frequency space is converted to 
a low frequency by mixing process using the non-uniform sample pulse train. The 
folded signal contains the bandwidth of the LO modulation, and this bandwidth is the 
information to recover the original frequency of the intercepted signal [12, 13].

Meanwhile, the mono-pulse signal has been widely used in many radar systems 
[18], and the wideband receiver will intercept the multiple mono-pulse radar sig-
nals in dense signal environment. In the noncooperative receiving applications, the 
intercepted radar signals are unknown, and these unknown signals are required to 
be reconstructed to obtain their information [3]. Because the modulated sampling 
scheme can be applied to intercept the multiple mono-pulse radar signals in the wide 
frequency space, it is required to have the ability for multiple mono-pulse signals 
recovery [17]. Currently, the main existing studies of the modulated sampling focus 
on the information recovery and the single signal reconstruction in the view of sig-
nal processing [19, 20]. When the multiple mono-pulse signals are intercepted by the 
modulated sampling scheme, the folded outputs will meet frequency aliasing, and it is 
necessary to analyze the reconstruction of the multiple mono-pulse signals. Because 
the typical modulated sampling scheme using the SFM LO may fail to reconstruct 
the multiple mono-pulse signals [17], this paper will analyze the relation between the 
LO modulation type and the reconstruction of the multiple mono-pulse signals in the 
view of the receiving architecture and propose a new LO modulation type to obtain 
a better reconstruction performance. The modulated sampling is in the middle of 
the uniform sampling and the CS random sampling, and the CS model of the modu-
lated sampling can be employed to analyze this scheme [11]. Because the orthogonal 
matching pursuit (OMP) algorithm is a general reconstruction approach based on the 
CS model [11, 12], it is chosen as the reconstruction method in this paper.



Page 3 of 22Qiu et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:22 	

The main contributions of this paper are as follows. Firstly, considering the completely 
frequency aliasing condition and based on the modulated sampling scheme using the 
typical LO modulation, the failure reason of the OMP algorithm to reconstruct multiple 
mono-pulse radar signals in wideband frequency space is analyzed mathematically. Sec-
ondly, an improved LO modulation type is proposed, which can reconstruct the multiple 
mono-pulse signals intercepted by the modulated sampling scheme in the completely 
frequency aliasing situation. In addition, the parameter setting criterion of the improved 
LO modulation and the comparison with other modulations are discussed.

This paper is organized as follows: Section 2 gives the signal model and the modulated 
sampling scheme CS model. In Sect. 3, the typical LO modulation using the SFM and the 
multiple mono-pulse signals reconstruction are analyzed based on the OMP algorithm. 
Specifically, reconstruction failure reason under the completely frequency aliasing con-
dition is investigated. In Sect. 4, the improved LO modulation type is proposed, which 
can reconstruct the multiple mono-pulse signals in the completely frequency aliasing 
situation. Meanwhile, its parameter setting criterion and the comparison with other dif-
ferent LO modulations are discussed. The simulations are demonstrated and analyzed in 
Sect. 5. The results’ discussion of this paper and the conclusion are given in Sect. 6 and 
Sect. 7, respectively.

2 � Mathematical model
The multiple simultaneous intercepted complex mono-pulse radar signals can be written 
as:

where s is the signal number, Ai , i = 1, 2, . . . , s is the amplitude of each signal, ϕi is the 
initial phase and fi is the carrier frequency of each signal. In (1), t ∈ [0, T ) , T  is the sig-
nal time width in the observation window that can be obtained by the signal detection 
[21]. To simplify the following analysis, the initial phases are ϕi = 0 . In the noncoopera-
tive receiving applications, the signals in (1) are unknown and carrier frequencies fi in 
(1) are required to be obtained. For instance, the radar reconnaissance receiver inter-
cepts the unknown signals in wide frequency space and it is a typical noncooperative 
receiver. Since the frequency aliasing situation is considered in this paper, the ampli-
tudes in (1) are assumed as Ai = A , which implies the frequency aliasing is under the 
worst condition [9].

The modulated sampling scheme or the NYFR is given in Fig. 1 [11–13].
In Fig. 1, the LO carrier frequency is fs and the Nyquist zone (NZ) bandwidth equals fs 

when the input signals are complex [13]. The wideband RF filter allows several NZs to be 
sampled. The multiple input signals are mixed with the non-uniform sample pulse train 
after they are filtered by the wideband RF filter. The non-uniform sample pulse train is gen-
erated by the LO and each sample times tk is at the zero-crossing rising (ZCR) time of the 
RF sample clock. Because the RF sample clock contains a modulation θ(t) , the sample pulse 
train is non-uniform, and the average sample rate of the non-uniform sample pulse train is 
fs . The mixed signals in the 0th NZ are filtered by a normalized interpolation filter whose 

(1)x(t) =
s

∑

i=1

Aie
2jπ fit+jϕi
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pass band is fs . At last, the filtered signal y(t) is sampled again by an ADC with a low sam-
ple rate that satisfies the Nyquist sampling theorem.

Considering the noncooperative receiving, the signal with a high carrier frequency is hard 
to be directly sampled because of the ADC sample rate limitation. The modulated sampling 
scheme can fold the signal with high carrier frequency to the low frequency by the mixing 
process of the non-uniform sampling in Fig. 1, and it realizes the wideband receiving by an 
ADC with a low sample rate. The reconstruction means recovering the intercepted signal 
by using the modulated sampling scheme and the folded output [11, 12].

Then, the model of the modulated sampling scheme is given. The multiple intercepted 
mono-pulse signals in frequency domain are X = F [x(t)] , where F  is the Fourier trans-
form operator. Since the spectra of the intercepted signals can be represented as a Nyquist 
rate sampled vector and considering the CS theory, the input X ∈ C

N is an s-sparse vec-
tor and the output is y ∈ C

M[12, 22], where N = MK  , K  is the number of NZs, M is the 
element number of y and N  is the element number of X . Hence, the modulated sampling 
scheme in Fig. 1 can be modeled as [12]

where � ∈ C
M×N is the sensing matrix, X = [X0,X1, · · · ,XM−1, · · · ,XN−1]

T is the input 
in frequency domain, and y = [y0, y1, · · · , yM−1]

T is the output in time domain.
Based on Fig. 1, the sensing matrix � can be expressed as [12, 17]

In (3), we have

IM is an M ×M identity matrix in (4),

(2)y = �X

(3)
� = RS�

(4)R =
[

IM IM · · · IM
]

Fig. 1  Modulated sampling scheme
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where m ∈ [0, M − 1] . The block diagonal matrix in (4) is

where ψM ∈ C
M×M is the inverse discrete Fourier transform (IDFT) matrix. Consider-

ing the typical modulated sampling scheme, the LO modulation in (5) is the SFM and it 
can be written as [12, 13]

where fLO is the LO modulation frequency, TADC is the sampling interval of the ADC in 
Fig. 1, mf  is the SFM modulation coefficient, and the IDFT matrix ψM in (6) is

where ω = ej
2π
M  . To simplify the following analysis, mf  is assumed as 1 since it is used to 

change the SFM bandwidth [17].
According to (3), (4), (5) and (6), the sensing matrix � in (2) can be calculated as:

Considering the multiple mono-pulse signals in (1), the sampling scheme in Fig. 1 and 
the sensing matrix in (9), the outputs of the modulated sampling scheme in (2) can be 
computed as

where ki = round
(

fi/fs
)

⊂ {0, 1, · · · , K − 1} is the NZ index of the ith intercepted 
mono-pulse radar signal. Compared with the intercepted signals in (1), the carrier fre-
quencies of the folded outputs in (10) are in the 0th NZ and they are fi − kifs . The out-
puts contain the added LO modulation and it is the SFM. Besides, the output amplitudes 
remain unchanged because of the normalized interpolation filter, and the modulation 
type has no effect on the output power and the dynamic range [23]. To further illustrate 
the multiple outputs in (10), Fig. 2 shows the multiple mono-pulse signals receiving pro-
cess based on the modulated sampling scheme.

In Fig. 2, four mono-pulse signals are intercepted simultaneously and these signals are 
located in four different NZs. According to the modulated sampling scheme, each folded 

(5)S =











IM
e−jθ(m)IM

. . .

e−j(K−1)θ(m)IM











(6)� =









ψM
ψM

. . .

ψM









(7)θ(m) = mf sin
(

2π fLOmTADC

)

(8)ψM = 1√
M











1 1 · · · 1

1 ω · · · ωM−1

...
...

. . .
...

1 ωM−1 · · · ω(M−1)(M−1)











(9)� =
[

ψM e−jθ(m)ψM · · · e−j(K−1)θ(m)ψM

]

(10)y(m) = A

s
∑

i=1

e2jπ(fi−kifs)mTADC−jki sin (2π fLOmTADC)
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signal is in the 0th NZ and it contains the LO modulation bandwidth, which is expressed 
in (10). The added bandwidth of each signal is different because the intercepted signals 
are located in different NZs. Particularly, when the folded carrier frequencies of the out-
puts fi − kifs are the same, the spectra of outputs are completely frequency aliasing, and 
this situation is shown in Fig. 2. Because the signals intercepted by the noncooperative 
receiver are unknown, the frequency aliasing condition in Fig. 2 is inevitable. Therefore, 
the multiple signals reconstruction under the frequency aliasing condition is necessary 
to be considered. Since the characteristic of the output signal is decided by the LO, the 
LO modulation should be investigated to obtain a good reconstruction result.

3 � Typical local oscillator modulation analysis
Generally, the typical LO modulation of the modulated sampling scheme is the SFM. 
Since the modulated sampling scheme can be expressed as the CS model in (2), the 
OMP algorithm is an effective method to reconstruct the intercepted signal [11, 12], and 
it is chosen as the reconstruction method in this paper. Before we start to analyze the 
relation between the LO modulation and the multiple signals reconstruction, the OMP 
algorithm based on the CS model in (2) is briefly given.

The steps of the OMP algorithm are as follows.

Step 1. Initialize: iteration counter it = 0 , support set �0 = ∅ and residual rt = y , 
where y is the output in (2);
Step 2. Increment it = it + 1 , and compute the atom ςit = arg

c=1,2,··· ,N
max

∣

∣

〈

�c, rit−1

〉∣

∣ , 

where � is the sensing matrix and c represents the column number of �;

Fig. 2  Multiple mono-pulse signals receiving process based on modulated sampling scheme
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Step 3. Update the support �it = �it−1 ∪
{

ςit
}

 , update the reconstructed signal 
yit = ��it

�
−1
�it

y , and compute the residual rit = y − yit;

Step 4. Go to step 2 if it ≤ s , else terminate.

Next, based on the typical LO using the SFM and the OMP algorithm, the multiple 
intercepted mono-pulse radar signals’ reconstruction is analyzed.

Firstly, according to the first two steps of the OMP algorithm, the purpose of step 2 
in the first iteration is to find the atom that corresponds to the maximum of 

∣

∣

〈

�, y
〉
∣

∣ . 
Hence, based on (9), it yields

In (11), the element ejkθ(m)ψH
My , k = 0, 1, · · · ,K − 1 means the SFM demodula-

tion and the discrete Fourier transform (DFT) in the kth NZ, which can be further 
expressed as:

where FD is the DFT operator. The result in (12) can be interpreted as the demodula-
tion of the signal in each NZ by using the recover signal r(m) = ejk sin (2π fLOmTADC) , 
k = 0, 1, · · · ,K − 1 and calculating the corresponding DFT results. The process in (12) 
is similar to the method that using the maximum peak value in frequency domain to 
estimate the NZ index ki based on the SFM demodulation [13, 24].

Therefore, if the spectra of the outputs in (10) can be separated in frequency 
domain, the OMP algorithm can directly reconstruct these mono-pulse signals. How-
ever, because the multiple mono-pulse signals are unknown, it is possible to meet 
the situation in Fig.  2, and the completely frequency aliasing situation should be 
considered.

Under this condition, all folded signals in the 0th NZ have the same carrier frequen-
cies, and the folded carrier frequencies are assumed as fci = fi − kifs, i = 1, 2, · · · , s . 
Furthermore, (12) can be rewritten as

According to (13), the element of 
∣

∣

〈

�, y
〉∣

∣ in the kth NZ can be computed as

where * is the convolution. Since the DFT result is the spectrum discretization of the 
discrete-time Fourier transform (DTFT), the DTFT result is employed to approximate 
the DFT result in (14) to simplify the analysis. Besides, the impact of the window func-
tion on the signal e2jπ fcimTADC is omitted to further simplify the analysis of (14). Thus, 
(14) can be computed as

(11)
〈

�, y
〉

=
[

ψH
My ejθ(m)ψH

My · · · ej(K−1)θ(m)ψH
My

]T

(12)

ejkθ(m)ψH
My = FD

[

ejk sin (2π fLOmTADC)
s

∑

i=1

Ae2jπ(fi−kifs)mTADC−jki sin (2π fLOmTADC)

]

(13)ejkθ(m)ψH
My = FD

[

ejk sin (2π fLOmTADC)
s

∑

i=1

Ae2jπ fcimTADC−jki sin (2π fLOmTADC)

]

(14)

∣

∣

〈

�, y
〉∣

∣(k) =
∣

∣FD[y(m)r(m)]
∣

∣ =
∣

∣

∣

∣

∣

A

s
∑

i=1

{

FD

(

e2jπ fcimTADC

)

∗ FD

[

ej(k−ki) sin (2π fLOmTADC)
]}

∣

∣

∣

∣

∣
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where δ(·) is the impulse function, f ∈ [−fADC/2, fADC/2
)

 and fADC = 1/TADC.
Focusing on the second convolution term in (15), it can be calculated as

where Jp(·) is the Bessel function with p order and the impact of the window function on 
ej2πpfLOmTADC is also omitted. Substituting (16) into (15), it yields

If a single mono-pulse signal is intercepted, the maximum value of (17) is located 
in fc1 when p = 0 and k = k1 , which means the NZ index of the modulated sampling 
scheme output is estimated and the signal can be directly reconstructed. According to 
the Bessel function, the maximum of (17) is

In terms of the multiple mono-pulse signals interception, the matched NZ index 
condition is considered firstly. The matched NZ index condition means the NZ index 
of the recover signal r(m) equals the NZ index of one modulated sampling scheme 
output, and it can be expressed as k = kz , z ⊂ [1, 2, · · · , s] . Therefore, the result in (17) 
is

In (19), the result contains one peak that is located in f = fci . Focusing on this fre-
quency, (19) can be rewritten as

In (20), when f = fci and k = kz , the signal with the matched NZ index meets its maxi-
mum whose value equals the result in (18), whereas the values of the rest signals in (20) 
with other NZ indices are smaller than the maximum value.

(15)
∣

∣FD[y(m)r(m)]
∣

∣ ≈
∣

∣

∣

∣

∣

A

s
∑

i=1

{

2πδ
(

f − fci
)

∗ FD

[

ej(k−ki) sin (2π fLOmTADC)
]}

∣

∣

∣

∣

∣

(16)

FD

�

ej(k−ki) sin (2π fLOmTADC)
�

=FD





∞
�

p=−∞
Jp(k − ki)e

j2πpfLOmTADC





≈ 2π

∞
�

p=−∞
Jp(k − ki)δ

�

f − pfLO
�

(17)
∣

∣

〈

�, y
〉∣

∣(k) =
∣

∣FD[y(m)r(m)]
∣

∣ ≈ 4Aπ2

∣

∣

∣

∣

∣

∣

s
∑

i=1

∞
∑

p=−∞
Jp(k − ki)δ

(

f − fci − pfLO
)

∣

∣

∣

∣

∣

∣

(18)
∣

∣

∣
FD[y(m)r(m)]

∣

∣

f=fc1,p=0,k=k1

∣

∣

∣
≈ 4Aπ2J0(0)δ(0) = 4Aπ2

(19)

∣

∣

∣
FD[y(m)r(m)]

∣

∣

k=kz

∣

∣

∣
≈ 4Aπ2

∣

∣

∣

∣

∣

∣

s
∑

z �=i,i=1

∞
∑

p=−∞
Jp(k − ki)δ

(

f − fci − pfLO
)

+ 4Aπ2δ
(

f − fci
)

∣

∣

∣

∣

∣

∣

(20)

�

�

�
FD[y(m)r(m)]

�

�

k=kz ,p=0,f=fci

�

�

�
≈ 4Aπ2

�

�

�

�

�

�





s
�

z �=i,i=1

J0(k − ki)δ(0)+ δ(0)





�

�

�

�

�

�

= 4Aπ2

�

�

�

�

�

�

δ(0)





s
�

z �=i,i=1

J0(k − ki)+ 1





�

�

�

�

�

�
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Furthermore, the unmatched NZ index situation is considered. The unmatched NZ 
index situation means the NZ index of the recover signal r(m) is not equal to any NZ 
index of the output y(m) (i.e., k  = kz ). Similarly, the value of (17) in the frequency f = fci 
is calculated like the analysis of (19) and (20). When f = fci and p = 0 , (17) can be 
expressed as

Compared with the summation terms in (20) and (21), it is possible that

The inequality in (22) means the value of the unmatched NZ index may be greater than 
the value of the matched NZ index when the LO modulation is the SFM. For example, 
two mono-pulse signals are considered. The first signal is in the 2nd NZ and the second 
signal is located in the 4th NZ. When the NZ index k = 3 , this situation meets the 

expression in (21) and the summation term is 
2
∑

i=1

J0(1) . When k = 2 , this condition 

means the NZ index is matched and the summation term can be calculated as J0(2)+ 1 

according to (20). Hence, we have 
2
∑

i=1

J0(1) > J0(2)+ 1 , and the result in (21) is greater 

than that in (20). Consequently, the return atom ς1 in step 2 is located in the incorrect 
NZ.

The reason of the above phenomenon comes from the spectrum of the LO modula-
tion that contains the Jacobi component. In other words, the SFM spectrum is not flat 
because it contains the summation of the Jacobi components in (17). Thus, maximum of 
∣

∣

〈

�, y
〉∣

∣ in step 2 may located in the unmatched NZ.
Then, we continue to investigate the OMP algorithm. Since �1 is the support consists 

of the return atom in step 2, the reconstructed signal in the first iteration can be com-
puted as

where �1 ⊂ [0, · · · ,N − 1] . Because �−1
�1

= �
H
�1

 , �−1
�1

y represents the spectrum peak 
value of y after the SFM demodulation that is located in the support �1 . The recon-
structed signal spectrum in (23) is regarded as

where yrsp ∈ C
N . It can be interpreted that (24) is a narrowband filter and it only filters 

the spectrum in the support �1 . Besides, due to ��1 in (23) representing the SFM modu-
lation and the IDFT of the filtered spectrum, (23) is the reconstructed signal in time 
domain corresponding to the support �1.

(21)
∣

∣

∣
FD[y(m)r(m)]

∣

∣

p=0,f=fci

∣

∣

∣
≈ 4Aπ2δ(0)

∣

∣

∣

∣

∣

[

s
∑

i=1

J0(k − ki)

]∣

∣

∣

∣

∣

(22)
s

∑

i=1

J0(k − ki) >

s
∑

z �=i,i=1

J0(k − ki)+ 1

(23)y1 = ��1�
−1
�1

y

(24)
yrsp =

[

0 · · · 0 �
−1
�1

y 0 · · · 0
]

↑
�1
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When the support �1 is located in the incorrect NZ, the reconstructed signal in (23) 
is another SFM signal. As a result, r1 = y − y1 in step (3) will not clean any output of 
the modulated sampling scheme and it will add another SFM signal. Thus, under the 
completely frequency aliasing condition, the first iteration of the OMP algorithm fails 
to reconstruct any mono-pulse radar signals when the LO modulation type is the SFM.

4 � Improved local oscillator modulation
According to the analysis in Sect. 3, the OMP algorithm fails to reconstruct the mul-
tiple mono-pulse signals in the completely frequency aliasing situation when the 
modulated sampling scheme uses the SFM LO. Meanwhile, because the atom calcula-
tion in the OMP algorithm is equivalent to the NZ index estimation method in [13], 
this method also fails to estimate the multiple NZ indices when the LO modulation 
is the SFM. Naturally, from the perspective of the receiving architecture, finding an 
improved LO modulation type to obtain a better multiple mono-pulse signals recon-
struction is necessary to be investigated.

4.1 � Improved local oscillator using periodic linear frequency modulation 

and reconstruction

In Sect. 3, the reason of the OMP algorithm failing to reconstruct the multiple mono-
pulse signals under the completely frequency aliasing condition is that the SFM 
spectrum is out of flatness because of the Jacobi component. Considering the require-
ments of the modulated sampling scheme LO, the LO modulation type should be 
periodic and it should contain a certain bandwidth. Therefore, combining with the 
implementation of sample pulse train generation [25], the periodic linear frequency 
modulation (PLFM) is chosen as the improved LO modulation type and the LO of the 
modulated sampling scheme using the PLFM in (7) can be rewritten as

where µ0 is the chirp rate, TLO is the modulation period of the PLFM, TLO < T  and mod 
means modulo. In (25), the instantaneous frequency is 2πµ0 mod (mTADC , TLO) and 
it is linear in each period TLO . According to the multiple intercepted mono-pulse radar 
signals in (1), the modulated sampling scheme in (2) and the LO modulation in (25), the 
outputs can be computed as

Then, the relation between the PLFM LO and the multiple mono-pulse signals 
reconstruction is analyzed. Based on the OMP algorithm, (12) and (25), the recover 
signal is

where k = 0, 1, · · · ,K − 1 . The analysis of step 1 and step 2 of the OMP algorithm is like 
the analysis of (13). Focusing on the kth NZ, it yields

(25)θPLFM(m) = πµ0 mod (mTADC , TLO)
2

(26)y(m) = A

s
∑

i=1

e2jπ(fi−kifs)mTADC−jkiπµ0 mod (mTADC , TLO)
2

(27)rPLFM(m) = ejkπµ0 mod (mTADC , TLO)
2
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Similar to the analysis in (14) and according to (28), the result of 
∣

∣

〈

�, y
〉
∣

∣ in the kth 
NZ is approximately expressed as:

where fci = fi − kifs, i = 1, 2, · · · , s . In (29), the DTFT result is also employed to approx-
imate the DFT result, and the PLFM modulation part in (29) should be investigated to 
guarantee step 2 of the OMP algorithm returns the atom in the correct NZ under the 
completely frequency aliasing condition.

Focusing on the PLFM modulation part in (29), it can be calculated as

where 
∣

∣ξq
(

f
)∣

∣ =
√

[C(uq1)+C(uq2)]
2+[S(uq1)+S(uq2)]

2

√
2(k−ki)

 , 

θq
(

f
)

= arctan
[

S(uq1)+S(uq2)
C(uq1)+C(uq2)

]

− π f 2

(k−ki)µ0
 , q = 1, 2, · · · ,Q , Q = round

(

T
TLO

)

 , 

MLO = round
(

TLO
TADC

)

 , uq1 =
√

2(k − ki)µ0

[

MLOTADC(q − 1)− f
(k−ki)µ0

]

 , 

uq2 =
√

2(k − ki)µ0

[

MLOTADCq − f
(k−ki)µ0

]

  , 

uQ2 =
√

2(k − ki)µ0

[

MLOTADC − f
(k−ki)µ0

]

 , C(·) and S(·) are the Fresnel integral results.

In (30), the PLFM part in the frequency domain contains several Fresnel integral 
results and it approximates the summation of several rectangles, which means the spec-
trum of the PLFM has no Jacobi component and it is flat. According to the matched NZ 
index condition and the spectrum peak in (29), when k = kz and f = fci , the result in 
(29) is

In addition, the unmatched NZ index situation is considered, and the corresponding 
result in (29) is

(28)

ejkθ(m)ψH
My = FD

[

Aejkπµ0 mod (mTADC , TLO)
2

s
∑

i=1

e2jπ(fi−kifs)mTADC−jkiπµ0 mod (mTADC , TLO)
2

]

(29)

∣

∣

〈

�, y
〉∣

∣(k) =
∣

∣FD[y(m)rPLFM(m)]
∣

∣ ≈
∣

∣

∣

∣

∣

A

s
∑

i=1

{

2πδ
(

f − fci
)

∗ FD

[

ej(k−ki)πµ0 mod (mTADC , TLO)
2
]}

∣

∣

∣

∣

∣

(30)FD

[

ej(k−ki)πµ0 mod (mTADC , TLO)
2
]

≈
Q
∑

q=1

∣

∣ξq
(

f
)∣

∣ejθq(f )

(31)

∣

∣

∣
FD[y(m)rPLFM(m)]

∣

∣

k=kz ,f=fci

∣

∣

∣
≈ 2πA

∣

∣

∣

∣

∣

∣

s
∑

z �=i,i=1

{

δ(0) ∗ FD

[

ej(k−ki)πµ0 mod (mTADC , TLO)
2
]}

+ δ(0)

∣

∣

∣

∣

∣

∣

= 2πA

∣

∣

∣

∣

∣

∣

s
∑

z �=i,i=1

Q
∑

q=1

∣

∣ξq(0)
∣

∣ejθq(0) + δ(0)

∣

∣

∣

∣

∣

∣

(32)

∣

∣

∣
FD[y(m)rPLFM(m)]

∣

∣

f=fci

∣

∣

∣
≈ 2πA

∣

∣

∣

∣

∣

s
∑

i=1

{

δ(0) ∗ FD

[

ej(k−ki)πµ0 mod (mTADC , TLO)
2
]}

∣

∣

∣

∣

∣

= 2πA

∣

∣

∣

∣

∣

∣

s
∑

i=1

Q
∑

q=1

∣

∣ξq(0)
∣

∣ejθq(0)

∣

∣

∣

∣

∣

∣
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Obviously, the maximum value in (31) is greater than that in (32) because (31) con-
tains δ(0) . Therefore, 

∣

∣FD[y(m)rPLFM(m)]
∣

∣ in (29) can achieve the maximum when k = ki 
and f = fci.

As a result, step 2 can obtain the support �it that is located in the correct NZ. Fur-
thermore, step 3 will demodulate, filter and clean the reconstructed signal. Finally, each 
intercepted signal can be reconstructed by the OMP algorithm. In the view of frequency 
analysis, compared with the spectrum of the SFM, the spectrum of the PLFM is flat due 
to the Fresnel integral, and the result of the matched NZ index in (31) will not be over-
whelmed by the result of the unmatched NZ index in (32).

In terms of the parameter estimation or interception performance, when the result in 
(29) meets its maximum, the estimated NZ index and the folded carrier frequencies can be 
obtained as

where i = 1, 2, · · · , s . The estimated carrier frequencies of the intercepted multiple 
mono-pulse signals are computed as f̂i = f̂ci + k̂ifs . Therefore, if the mono-pulse signals 
are recovered successfully, the parameters of the mono-pulse signals intercepted by the 
scheme can be estimated.

It is worth noting that the result of the last term in (30) will be no longer a rectangle when 
the distance between uq2 and uQ2 is very short. In other words, if uQ2 − uq2 in (30) is very 
small, the linear frequency change of the last piece of the PLFM is not obvious and the cor-
responding spectrum is similar to the spectrum of single tone. Thus, the result in (30) will 
contain an impulse function, and the summation result in (32) is not flat, which may lead 
signal reconstruction failure. Since the parameters of the PLFM LO are known and the time 
domain of the mono-pulse signal can be obtained by signal detection [21], increasing the 
chirp rate or omitting the last piece of the PLFM in the modulated sampling scheme output 
can avoid this circumstance.

4.2 � Modulation parameter setting criterion

Next, based on the improved LO modulation type, the parameter setting criterion is inves-
tigated to obtain a better reconstruction performance.

In this subsection, the CS model of the modulated sampling scheme y = �X in (2) is 
analyzed again. The sensing matrix � satisfies the restricted isometry property (RIP) of 
order s with parameter δs ∈ [0, 1) if

holds for every s-sparse signal X . Based on the relation between the RIP and eigenvalues 
[26], we have

where the Gram matrix G(��) = �
H
��� , and �� consists of the columns of � with indi-

ces � ∈ s , s ⊂ {1, 2, · · · , N }.
Since the eigenvalues of the Gram matrix G(�) contain the eigenvalues information of all 

sub-matrix �� , we focus on the Gram matrix G(�) [27] and it can be expressed as

(33)k̂i, f̂ci = arg
ki ,fci

{

max
[∣

∣

〈

�, y
〉∣

∣(k)
]}

(34)(1− δs)�X�22 ≤ ��X�22 ≤ (1+ δs)�X�22

(35)1− δs ≤ �min[G(��)] ≤ �max[G(��)] ≤ 1+ δs
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In (36), Gk1,k2 ∈ C
M×M is the off-diagonal sub-matrix, where the NZ indices are 

k1 = 0, 1, · · · , K − 1 , and k2 = 0, 1, · · · , K − 1 . According to the Gershgorin cir-
cle theorem, each Gershgorin disk radius should be less than δs to guarantee the 
sensing matrix � satisfies the RIP because the diagonal elements of G(�) are equal to 
1. Thus, the off-diagonal element in the off-diagonal sub-matrix is [17]

where the column index is c = 0, 1, · · · , M − 1 and the row index is 
r = 0, 1, · · · , M − 1 . If the number of s-sparse signals increases, the values of off-diag-
onal elements should be decreased to guarantee the relation in (37).

Then, the off-diagonal element in (36) can be calculated as

The off-diagonal element in (38) can be regarded as the DFT result of the signal 
using the improved LO modulation. Therefore, to recover more s-sparse signals 
intercepted by the modulated sampling scheme (i.e.. increasing s ), the bandwidth of 
the LO modulation BLO should be increased to satisfy (37), which means the chirp 
rate µ0 or the modulation period in (25) should be greater.

Moreover, the above criterion can be interpreted in frequency domain as well. 
According to the Parseval theorem, when the bandwidth of the LO modulation 
increases, the spectrum magnitude of the LO modulation will decrease and the fre-
quency aliasing impact is less. However, increasing the bandwidth of the LO modu-
lation has a limitation because the modulated sampling scheme requires BLO ≪ fs 
[23].

Furthermore, since the modulated sampling is in the middle of the uniform sam-
pling and the CS random sampling, the statistical RIP (StRIP) is employed to analyze 
the parameter setting criterion. The upper bound on general RIP numbers of the 
modulated sampling scheme is [11]

where C is a constant related to the LO modulation type and the LO modulation band-
width. Therefore, when the number of the intercepted mono-pulse signals increases (i.e., 
s increases), the LO modulation bandwidth BLO should be increased to guarantee the 
relation in (39). On the other hand, when BLO increases, the upper bound in (39) will be 
decreased and δs can satisfy the recovery requirement δ2s <

√
2− 1 [28].

(36)G(�) =









IM G10 · · · G(K−1)0

G01 IM · · · G(K−1)1

...
...

. . .
...

G0(K−1) G1(K−1) · · · IM









(37)
∣

∣

∣
gk1,k2,c,r

∣

∣

k1  =k2

∣

∣

∣
<

δs

s

(38)gk1,k2,c,r =
1

M

M−1
∑

m=0

ej(k2−k1)θPLFM(m)e−j 2πM m(r−c)

(39)δs ≤ sC

√

1

BLOT
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In summary, compared with the typical LO modulation type using the SFM, the 
OMP algorithm has the ability to reconstruct the multiple mono-pulse radar signals 
intercepted by the modulated sampling scheme using the PLFM LO under the com-
pletely frequency aliasing condition. Besides, increasing the PLFM bandwidth can 
increase the reconstruction number of the multiple mono-pulse radar signals.

4.3 � Extended discussion

To further explain the improvement of the PLFM LO, some other modulation types of 
the LO are discussed. In terms of the LO modulation requirements [11–13], the LO 
modulation should have a bandwidth and be periodic. The LO modulation bandwidth 
is the information to recover the original signal frequency and its value is required to 
be distinguishable in different NZs. Moreover, because the sample pulse is generated 
at the ZCR time, the LO modulation should be periodic for the purpose of sample 
pulse generation implementation. In addition, the LO modulation is non-random to 
preserve the intercepted signal structure. Presently, the main non-random periodic 
modulation types are the phase modulation and the frequency modulation. Hence, 
the binary phase shift keying (BPSK) and the periodic nonlinear frequency modula-
tion (PNLFM) are considered in this subsection.

When the LO modulation type is the BPSK, the ZCR time is calculated by the sum-
mation of several BPSK signals with different carrier frequencies and BPSK codes 
[29]. Essentially, this LO modulation can be regarded as a receiving structure using 
multiple channels with different codes like the MWC [7], whereas the merit of the 
modulated sampling scheme using single channel is vanished and it brings more 
receiving cost.

Then, the LO using the PNLFM is discussed, and the LO of the modulated sampling 
scheme using the cubic PNLFM can be expressed as

where µ1 and µ2 are the modulation parameters of the quadratic and cubic terms, 
respectively. Other parameters in (40) are the same as those in (25).

The cubic term in (40) can be regarded as parts of Maclaurin series of sin and cos 
functions with the independent variable µ2 . As a result, the spectrum of the PNLFM 
is not as flat as the PLFM. Thus, according to the analysis in Sect. 4.1, the multiple 
signals reconstruction performance using the PNLFM LO will be deteriorated.

Furthermore, compared with the PNLFM, the ZCR time generation and the imple-
mentation of the PLFM are easier because of the linear frequency property. Moreover, 
since the PLFM in one period has an optimum kernel function—fractional Fourier 
transform (FRFT) [30] and it is a linear transform, the output of the modulated sam-
pling scheme using PLFM LO can be processed easily. Overall, this paper chooses the 
PLFM as the LO modulation to improve the multiple mono-pulse reconstruction.

(40)θPNLFM(m) = 2π

[

µ1 mod (mTADC , TLO)
2

2
+ µ2 mod (mTADC , TLO)

3

3

]
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5 � Experiments
In this section, several simulation experiments are given to prove the analysis in this 
paper.

5.1 � Multiple mono‑pulse signals reconstruction using typical and improved local oscillator 

modulations

Firstly, the typical modulated sampling scheme using the SFM LO is considered. The 
LO carrier frequency is 1 GHz, the LO modulation frequency fLO is 20 MHz, the SFM 
modulation coefficient is 1 and the number of the NZs is 10.

Two groups of multiple mono-pulse radar signals are used as the intercepted signals. 

The signals in the first group are assumed as x1(t) =
2
∑

i=1

Aie
2jπ fit+jϕi , where the signal 

carrier frequencies are 2.21 GHz and 4.24 GHz, the signal amplitudes Ai are all equal to 
1, the signal durations are 0.5  μs and the initial phases ϕi are 0. The second group is 

x2(t) =
4
∑

i=3

Aie
2jπ fit+jϕi , where the signal carrier frequencies are 2.21 GHz and 4.21 GHz, 

and other parameters are the same as those in the first group. The mono-pulse radar sig-
nals in the two groups are in S band and C band. The signal reconstruction method is the 
OMP and the number of the iterations is 3. Based on the modulated sampling scheme, 
Fig. 3 shows the spectra of the intercepted signals in the two groups and the correspond-
ing spectra of the reconstructed signals.

Figure  3a demonstrates the spectra of the first group. The spectra of the two inter-
cepted signals and the reconstructed signals are all located in the same frequency. Thus, 
the reconstruction using the OMP algorithm for the first group is success. Figure 3b is 
the spectra of the second group and it can be seen that the spectra of the two intercepted 
signals and the reconstructed signals are different, which implies the OMP algorithm 
fails to reconstruct the intercepted signals. In detail, according to (10), the folded carrier 
frequencies in the first group can be computed as 0.21 GHz and 0.24 GHz. Therefore, 
the two folded signals are partly frequency aliasing and the OMP algorithm can recon-
struct these signals. However, the folded carrier frequencies in the second group all 

(a) (b)
Fig. 3  Spectra of intercepted mono-pulse signals and reconstructed signals using SFM LO. a First group, b 
Second group
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equal 0.21 GHz, and these folded signals are completely frequency aliasing. Under this 
circumstance, the OMP algorithm fails to reconstruct the multiple mono-pulse signals.

Then, to further explain the results in Fig. 3 and prove the analysis in Sect. 3, Fig. 4 
gives the step 2 results of the OMP algorithm in the first iteration when the two groups 
of multiple mono-pulse signals are intercepted by the modulated sampling scheme.

Considering the carrier frequencies of the signals in each group, the NZ indices 
of the two signals can be computed as 2 and 4, respectively. According to the above 
parameters, the NZ bandwidth is 1 GHz. As shown in Fig. 4a, the maximum peaks are 
located in the 2nd and the 4th NZs, and they can return the atoms in the correct NZs. 
However, the maximum peak in Fig. 4b is in the 3rd NZ, which implies that the return 
atom is located in the incorrect NZ. Therefore, the OMP algorithm fails to recon-
struct to the multiple signals in the second group.

Furthermore, the improved LO modulation using the PLFM is considered. The 
chirp rate is 181  MHz/μs, the modulation period of the PLFM is 0.13  μs and other 
parameters of the modulated sampling scheme are the same as those in Fig.  3. The 
two groups of the mono-pulse signals in Fig. 3 are also used as the intercepted signals. 
Figure 5 shows the spectra of the intercepted signals and the reconstructed signals.

(a) (b)
Fig. 4  Step 2 results of OMP algorithm in the first iteration. a First group, b Second group

(a) (b)
Fig. 5  Spectra of intercepted mono-pulse signals and reconstructed signals using PLFM LO. a First group, b 
Second group
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As shown in Fig.  5, the two groups of multiple mono-pulse signals are all recon-
structed successfully when the LO modulation is the PLFM. Particularly, compared 
with the reconstruction result in Fig. 3b, Fig. 5b shows that the OMP algorithm can 
reconstruct the completely frequency aliasing folded signals. Therefore, the improved 
LO is a better choice for the multiple mono-pulse signals reconstruction.

5.2 � Reconstruction performance analysis

Next, the reconstruction performances for multiple mono-pulse radar signals are given 
based on the modulated sampling scheme. In this subsection, the reconstruction prob-
ability for the multiple mono-pulse signals is defined as

where Ncorrect is the number of successful reconstruction experiments and Ntotal is the 
number of total Monte Carlo simulations. The successful reconstruction means each 
mono-pulse signal in one group is reconstructed correctly. Based on the analysis in 
Sect.  4, if each mono-pulse signal can be reconstructed, the parameters of the inter-
cepted signals can be directly obtained. Therefore, the reconstruction probability Pr 
equals the parameter estimation performance of the interception system.

The two groups of mono-pulse signals in Fig. 3 are used. Two LO modulation types of 
the modulated sampling scheme are employed, and they are the SFM and the PLFM. The 
parameters of the modulated sampling scheme using the SFM LO are the same as those 
in Fig. 3 and the parameters of the PLFM LO are the same as those in Fig. 5. The input 
noise is the white Gaussian noise. The input signal-to-noise ratio (SNR) is from -15 dB 
to 5 dB, and 500 Monte Carlo experiments are conducted for each SNR. The reconstruc-
tion method is the OMP algorithm, and the iteration number of the OMP algorithm is 3. 

(41)Pr =
Ncorrect

Ntotal

Fig. 6  Reconstruction probabilities of signals in two groups
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Figure 6 demonstrates the reconstruction probabilities of the two groups using the two 
LO modulation types.

In Fig.  6, when the SNR is greater than -5  dB, the reconstruction probability of the 
two mono-pulse signals in group 1 using the SFM LO can reach 90%. In the meantime, 
the reconstruction probability of group 2 using the SFM LO is always around 0%, which 
means the OMP algorithm using the SFM LO fails to reconstruct the two mono-pulse 
signals in group 2. This result coincides with the analysis of Sect.  3 and Fig.  3. How-
ever, the OMP algorithm using the PLFM LO can reconstruct the both groups. In detail, 
when the SNR is higher than -11 dB, the reconstruction probabilities of the two groups 
can achieve 90%. Moreover, focusing on the reconstruction performance of group 1, the 
performance using the PLFM LO is better than that using the SFM LO. The reasons are 
that the PLFM LO has a larger bandwidth and its spectrum is flat, which decreases the 
frequency aliasing impact.

In addition, considering the different number of s-sparse mono-pulse signals and the 
PLFM LO, the corresponding reconstruction probabilities are simulated. Three groups 
of mono-pulse signals are assumed as the intercepted signals. The signals in group 1 can 
be written as

where Ai = 1, i = 1, 2 , f1 = 1.21 GHz , f2 = 2.21 GHz , ϕi = 0, i = 1, 2 and the signal 
durations T = 0.5 µs.

The signals in group 2 are:

where Ai = 1, i = 3, 4, 5 , f3 = 1.21 GHz , f4 = 2.21 GHz , f5 = 3.21 GHz , 
ϕi = 0, i = 3, 4, 5 and the signal durations T = 0.5 µs.

The signals in group 3 can be expressed as:

where Ai = 1, i = 6, · · · , 10 , f6 = 1.21 GHz , f7 = 2.21 GHz , f8 = 3.21 GHz , 
f9 = 4.21 GHz , f10 = 0.21 GHz , ϕi = 0, i = 6, · · · , 10 and the signal durations 
T = 0.5 µs.

As to the modulated sampling schemes, three PLFM LOs are used. The chirp rate 
of the first LO is 80 MHz/μs, the chirp rate of the second LO is 150 MHz/μs, and the 
chirp rate of the third LO is 180 MHz/μs. Other parameters of the modulated sampling 
schemes are the same as those in Fig. 5. The input SNR is from − 10 dB to 10 dB and 
500 Monte Carlo experiments are conducted for each SNR. The iteration number of the 
OMP algorithm is 6. Figure 7 gives the reconstruction probability of each group based 
on the three LOs.

(42)x1(t) =
2

∑

i=1

Aie
2jπ fit+jϕi

(43)x2(t) =
5

∑

i=3

Aie
2jπ fit+jϕi

(44)x3(t) =
10
∑

i=6

Aie
2jπ fit+jϕi
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According to the parameters of the intercepted signals and the modulated sampling 
scheme, the folded carrier frequencies of the signals in the three groups are equal to 
0.21 GHz, which means these outputs are all completely frequency aliasing.

As illustrated in Fig. 7, the reconstruction probabilities of group 1 using three LOs can 
reach 90% when the SNR is higher than 4 dB. In detail, the probability of group 1 using 
the first LO is worse than the probabilities of other two LOs, and the performance of 
group 1 using the third LO is the best. The reason is that the third LO has a larger band-
width, which brings a better reconstruction result. Besides, the probability of group 2 
using the first LO is around 0% and the OMP algorithm fails to reconstruct these signals. 
However, the OMP algorithm using the second and the third LOs can reconstruct the 
three signals in group 2 when the SNR is greater than 4 dB, and the performance using 
the third LO is better than the second LO. Furthermore, the five signals in group 3 can 
be reconstructed by using the third LO and other LOs fail to reconstruct them. In addi-
tion, the probability fluctuation of group 3 using the second LO comes from the noise.

The results in Fig. 7 show that expanding the LO modulation bandwidth can improve 
the OMP algorithm reconstruction probability when the number of s-sparse signals 
increases, which proves the analysis in Sect. 4.2. Specifically, when the LO modulation 
type is the PLFM, the OMP algorithm can reconstruct the s-sparse mono-pulse signals 
intercepted by the modulated sampling scheme even the folded outputs are completely 
frequency aliasing.

Finally, two LO modulation types are considered, and they are the PLFM and the 
PNLFM. The parameters of the modulated sampling scheme using the PLFM LO are 
the same as those using the third LO in Fig.  7. In terms of the modulated sampling 
scheme using the PNLFM LO, two LOs with different bandwidth are employed. The 
quadratic and cubic modulation parameters of the first PNLFM LO are 150  MHz/
μs and 0.235 GHz/μs2. The quadratic and cubic modulation parameters of the second 
PNLFM LO are 150 MHz/μs and 0.35 GHz/μs2. Other parameters of the two modulated 

Fig. 7  Reconstruction probabilities of multiple signals using different LO bandwidths
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sampling schemes are the same as those in Fig. 5. The signals in group 3 in (44) are the 
intercepted signals. Figure 8 demonstrates the reconstruction probability using different 
LO modulation types.

In Fig. 8, the reconstruction probability using the PLFM LO is great than 90% when 
the SNR is greater than − 2 dB, whereas the reconstruction probability using the first 
PNLFM LO can reach the same performance when the SNR is larger than 2 dB. Accord-
ing to the parameter settings, the bandwidths of the two PNLFM in one period are 
23.472 MHz and 25.415 MHz, respectively. The bandwidth of the PLFM in one period is 
23.4 MHz. Hence, when the bandwidths are almost the same, the reconstruction perfor-
mance using the PLFM LO is better than that using the first PNLFM LO in Fig. 8. Mean-
while, the performance using the second PNLFM LO is better than that using the first 
PNLFM LO since the bandwidth of the second PNLFM in one period is larger. However, 
it is still worse than the performance using the PLFM LO, which proves the analysis in 
Sect. 4.3.

6 � Results and discussion
According to the above experiments, it can be seen that the modulated sampling scheme 
using the typical SFM LO fails to reconstruct multiple mono-pulse signals under the 
completely frequency aliasing condition, which is shown in Fig. 3. The reason of this fail-
ure is the SFM spectrum containing Jacobi component that is analyzed in Sect. 3, and 
the experiment results in Fig. 4 prove it. Then, the modulated sampling scheme using 
the PLFM LO can reconstruct multiple mono-pulse signals in the completely frequency 
aliasing situation, and it can be seen in Fig. 5. Moreover, the results in Fig. 6 prove the 
effectiveness of the improved LO modulation. Furthermore, the results in Fig. 7 demon-
strate the analysis of the LO modulation parameter setting. At last, combing with other 
modulation type, the simulations in Fig. 8 show that the PLFM is a better choice for mul-
tiple mono-pulse signals reconstruction.

Fig. 8  Reconstruction probabilities using different LO modulation types
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In summary, when the multiple mono-pulse signals are intercepted by the modulated 
sampling scheme using the PLFM LO, the OMP algorithm can reconstruct the folded 
signals under the completely frequency aliasing condition, which overcomes the draw-
back of the typical modulated sampling scheme. Although the LO modulation can 
also use other modulation types, the PLFM LO is still a better choice to improve the 
reconstruction performance. The future works include the optimal modulation type dis-
cussion in different receiving applications and investigating the wideband signal recon-
struction using the improved LO modulation.

7 � Conclusion
In this paper, the relation between the LO modulation of the modulated sampling 
scheme and the multiple mono-pulse radar signals reconstruction using the OMP 
algorithm is investigated. The sampling and the signal model are given firstly. The 
folded outputs are analyzed and the completely frequency aliasing situation is con-
sidered. Then, combining with the modulated sampling scheme model, the reason 
that the OMP algorithm using the typical SFM LO fails to reconstruct the multiple 
mono-pulse signals under the completely frequency aliasing condition is analyzed 
mathematically. Furthermore, the improved LO using the PLFM is given and its effec-
tiveness of reconstruction multiple mono-pulse signals is proved. Additionally, the 
parameter setting criterion of the PLFM LO is given to improve the reconstruction 
number of the multiple mono-pulse signals and other choices of the LO modulation 
types are discussed. At last, several simulations are conducted to prove the analysis, 
and the improved LO modulation can reconstruct multiple mono-pulse signals under 
the completely frequency aliasing condition.
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