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is available at the end of the paper, we therefore introduce a computationally efficient two-dimensional masked

article residual updates (2D MRU) compressive sensing framework. By utilizing the sparsity

of the beat signal in the frequency domain, the range-Doppler (RD) spectrum can be
reconstructed with the help of undistorted samples in the beat signal. Unlike the other
schemes, where a 2D signal measurement is vectorized into a 1D signal, the proposed
2D MRU can directly take a 2D signal measurement and reconstruct the corresponding
RD spectrum. Furthermore, the 2D MRU framework can be easily integrated into well-
known optimization schemes such as basis pursuit, iterative hard thresholding, iterative
soft thresholding, orthogonal matching pursuit, and approximate message-passing
algorithm. In addition to the standard iterative thresholding algorithms, we propose a
novel prior-model-based iterative thresholding method to further reduce the com-
putation time and reconstruction error. Theoretical analysis shows that the proposed
framework can successfully reconstruct the RD spectrum with high probability. Moreo-
ver, numerical experiments demonstrate the superiority of the proposed framework in
terms of computational complexity.

Keywords: Automotive radar, Interference mitigation, 2D compressive sensing, Prior
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1 Introduction

Automotive radar plays an important role in advanced driver assistant systems as it can
provide reliable safety support for modern vehicles under almost all weather condi-
tions. To achieve a higher level of automated driving, the number of vehicles equipped
with radar sensors and the number of radar sensors per vehicle are increasing rapidly.
Thus, mutual interference between automotive radars increases due to the rising density
of radar sensors on the road [1]. Since unexpected interference can impede the object
detection by either reducing the signal-to-noise ratio (SNR) or creating ghost targets [2,
3]. Thus, mutual interference can affect the functionality of radar sensors if no counter-
measures are taken.
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1.1 Prior work

Different signal reconstruction algorithms, such as the zeroing method, autoregressive
(AR) model-based interpolation and adaptive noise cancellation have been proposed
as countermeasures for automotive radar interference mitigation [1, 4—6]. The zeroing
method [1] is a basic technique in which the signal segment disturbed by interference
is simply set to zero. In [4], a complex band receiver and an adaptive noise canceller
are utilized for interference mitigation, it cancels the interference in the positive half of
the frequency spectrum ([0, 7] normalized frequency), while it uses the correlated inter-
ference in the negative half of the frequency spectrum ([—,0] normalized frequency)
as a reference. Solving the mutual interference issue in the frequency domain for fre-
quency-modulated continuous wave (FMCW) radar is also considered in [5], where the
signal disturbed by interference is recovered by linear predictive coding (LPC) in the
short-time Fourier transform (STFT) domain. However, the interference in real-world
scenarios can contain much diversity and randomness, e.g., the chirp rates of different
radar sensors can be similar to each other, and there can be multiple sources of interfer-
ence. Hence, the samples disturbed by interference in some chirps may spread across the
entire measurement. Thus, the number of available interference-free samples in these
chirps is not sufficient for LPC to provide adequate recovery in the STFT domain. Dif-
ferent to [5], the AR model is used in [6] for the discrete beat signal interpolation in the
positions which are disturbed by interference.

Recent research results have shown that compressive sensing (CS) approaches can be
used to tackle this problem [7-10]. In [7], the samples disturbed by interference are first
substituted with zeros and these zeroed samples are further interpolated using the itera-
tive method with an adaptive thresholding (IMAT) algorithm. In [8], the interference
is removed by using the orthogonal matching pursuit (OMP) algorithm to project the
interference-contaminated signals on a reduced chirplet basis which contains possible
hypotheses for slopes and time-shifts of chirps. The interference mitigation problem
is defined as a dual-basis pursuit problem and the morphological component analysis
is used in [9] for separating the interference from the discrete beat signal. In [10], the
sparse Bayesian learning algorithm is adopted for automotive radar interference mitiga-
tion. The range-Doppler (RD) spectrum can be acquired from the mean of the maximum
a posteriori (MAP) estimate under the given remaining undistorted samples in the dis-
crete beat signal. Most recently, the wavelet denoising technique was proposed to sup-
press the mutual interference in the time domain [11]. However, to apply this method
in practical automotive radar systems, the threshold values related to the wavelet coef-
ficients need to be optimized on the basis of large amounts of real world data and the
interference with similar amplitude as the echo signal of the target may still remain after

reconstruction.

1.2 Motivation and contribution
As exemplified above, CS algorithms usually provide better signal recovery than conven-
tional algorithms but might require more computational resources.
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Therefore, we propose a novel solution for the interference mitigation that can effi-
ciently reconstruct the RD spectrum by directly processing the two-dimensional (2D)
discrete beat signal. The proposed 2D masked residual updates (2D MRU) CS frame-
work can be easily integrated into most existing CS schemes as well as the proposed
novel prior-model-based iterative thresholding methods. Specifically, the main contribu-
tions of this paper are as follows:

Firstly, we propose a novel prior-model-based iterative thresholding method that
achieves smaller reconstruction error and computation time than corresponding base-
line algorithms. The update rate (typically 20 Hz) [12] in automotive radar systems indi-
cates that rich prior information can be provided for interference mitigation, since the
perceived environment may change only slightly during the short measurement cycles.

Secondly, a computationally efficient 2D MRU CS framework for RD spectrum recov-
ery is introduced. 2D MRU avoids large vectors and high-dimensional matrix operations
which typically come along with an increasing size of the measurement matrix.

Thirdly, the measurement transform matrix used in this paper is proven to satisfy the
restricted isometry property (RIP) with high probability. In other words, the proposed
framework can successfully reconstruct the RD spectrum with a high probability.

Fourthly, it is demonstrated that the proposed 2D MRU can be easily integrated to the
established CS schemes e.g., basis pursuit, iterative soft thresholding (IST), iterative hard
thresholding (IHT), OMP, approximate message-passing (AMP) and the proposed prior-
model-based iterative thresholding algorithms. The performance of different algorithms
that incorporate 2D MRU is evaluated and the superiority of the proposed framework in
terms of computational complexity is shown.

Finally, a detection method with a higher true-positive rate is proposed for the detec-
tion of interference-contaminated samples. The detection method can be further com-
bined with the state-of-the-art CS frameworks as well as with 2D MRU.

1.3 Organization and notations

The organization of this paper is as follows. In Sect. 2, the frequency-modulated con-
tinuous wave radar signal model is introduced. Section 3 describes the details of the pro-
posed prior-model-based iterative thresholding algorithms and 2D framework and we
prove that the proposed framework can successfully reconstruct the RD spectrum with
high probability. In Sect. 4, an algorithm for the detection of interference-contaminated
samples is proposed. The performance of the proposed method is evaluated through real
measurements in Sect. 5. Finally, Sect. 6 concludes this paper.

Notations: We denote vectors by boldface lower-case symbols and matrices by bold-
face upper-case symbols. The support set of a sparse signal is denoted as supp(-). The
empirical mean of a signal is denoted as (-) and the standard deviation is represented as
std(). || - || is the Frobenius norm and vec(-) denotes the vectorization of a matrix by
stacking the columns. The lower bound and upper bound on the complexity of an algo-
rithm are represented by Q and O, respectively.
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2 Automotive FMCW radar signal model
The chirp sequence modulation [13] which is a currently widespread variant of FMCW
in automotive radar system, contains M consecutive chirps, and its transmit waveform

can be represented as

M~-1

Te(t) = Y x(t —mT). (1)

m=0

The individual transmit chirp signal is given by
x(t) = exp (j27‘[ (fct + 0.5at2> ) rectr(t), (2)

where f; is the carrier frequency, « = B/T denotes the slope of the transmit signal with
B and T denoting the sweep bandwidth and the chirp duration, respectively, and recty ()
is the square pulse of duration T. The mth chirp of the target’s echo signal is delayed by t
relative to the transmit signal with a normalized relative Doppler shift d [2]:

rm(t) = Apx(t + (6 +mT)d — 1) + v (2), (3)

where A,, is the received amplitude, t = 2R/c, d = 2v/c, and v,, denotes complex
Gaussian noise. Here, R and v denote, respectively, the distance and relative radial veloc-
ity between the radar and the target, and ¢ represents the speed of light. The beat signal
at the intermediate frequency can be obtained after stretch processing, namely mixing
rm with the complex conjugate of the transmitted signal: ¥, (¢) = ry, (£)x*(¢). After fil-
tering and sampling with a period of T and collecting N samples per chirp, the discrete
beat signal can be approximated as [2]

Fnm = A exp (j2r (—at + fod)nT)

- exp (j27t (fcme)) +vymne[0O,N —1]. (4)

With the assumption that y,,, represents the additive in-band interference, which
can be induced by various sources of interference [14, 15], the discrete beat signal
Y = {YnN4n)} for0 <m <M —1and0 < n < N — 1 can be therefore summarized as

_ 5’n,m+Vn,m m-N+neH 5
y(m<N+Yl) - j}n,m_’_j’/n’m_{_vn’m mN+n¢H, ( )

where H is the set of sample indices without interference and m - N + n ¢ H denotes the
indices of the samples containing interference. Figure 1 shows examples of interference-
free and interference-contaminated discrete beat signals.

We now explain the two different signal models which will play an essential role in this

paper.
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Fig. 1 Example of a discrete beat signal without (a) and with (b) interference

2.1 Summary of signal model in matrix form
To obtain target range and velocity, the 2D discrete Fourier transform (DFT) can be

applied on the discrete beat signal matrix Y = {y, ,,,} € CNxM,

X=WN'Y-WAT4 (6)

where Wy € CNVN, Wy € CM*M are DFT matrices (as defined in Appendix A), and
X € CN*M denotes the 2D RD spectrum. Figure 4a shows an example RD spectrum

without interference and Fig. 4b shows an example RD spectrum with interference.

2.2 Summary of signal model in vector form
Based on the 2D signal model in matrix form, the one-dimensional (1D) vector form
of the signal model can be formulated. x € CMN*! denotes the vector form of the RD

spectrum and can be obtained by

x=(Wm! ® Wn) -y, (7)

where ® represents the Kronecker product andy = (¥, ..., Y1) € CYN*1,

3 Compressive sensing framework for radar interference mitigation

3.1 Compressive sensing

Compressive sensing has shown its strength in reconstructing sparse signals using
far fewer samples than required by the Nyquist sampling theorem [16]. It requires
a transform domain that provides a sparse representation of the observed signal. Its
sensing structure, i.e. the measurement transform matrix, has to satisfy the restricted
isometry property [17]. The transform domain with the low-dimensional represen-
tation is called sparse domain. A signal having k nonzero coefficients in the sparse
domain is called k-sparse. Generally, the sparsity of the signal y is measured by the
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lp pseudo norm of its representation vector x where the [y pseudo norm denotes the
cardinality of the support of x [18]:

lIxllp = card{supp(x)} = k. (8)

The representation of the beat signal in most automotive radar application scenarios
is sparse in the RD spectrum. Hence, the interference-pruned discrete beat signal can
be seen as the beat signal with a reduced sampling rate and its sparse representation
can be restored by the CS algorithm. The 1D signal model in vector form can be easily
connected to the CS framework. The measurement transform matrix can be written as
W =Wy ® Wy € CMNXMN,

The dimensions of the inverse DFT (IDFT) matrices Wy and Wy are N x N and
M x M (see Appendix A), respectively.

Assume that the number of all undisturbed samples across all chirps in (5) is g.
Thus, the resulting beat signal vector is given by y = (yio,f.,yiq_l)T with 0 < g < MN
and {ig, ..., ig—1} C {0,.., MN — 1}, and v = (1/”1;, - 1/}571) where 'ﬁiq—l denotes the i,

-th row vector in matrix W. The radar interference mitigation problem can be
rephrased as the reconstruction of the sparse vector x from the noisy measurement
¥ = Wx. This problem is equivalent to solving an underdetermined set of linear equa-
tions. An illustration of how to utilize the 1D CS framework for the interference miti-
gation of the automotive radar signal is presented in Fig. 2.

Under the condition that x is sparse, the problem can be reduced to a minimization
problem:

Page 6 of 25
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P : X = argmin {1||§—\i'x||%+v||x||o}, )
xeCMN 2

with the Lagrange multiplier v [18]. However, due to the discrete and discontinuous

nature of the [y pseudo norm, the /p-minimization is NP-hard in general [18]. Thus, Py is

computationally intractable. The /;-minimization or basis pursuit [19] can be interpreted

as the convex relaxation of the /p-minimization, and the /;-minimization is as follows

P; : X = argmin {;Hfr—\ilxllg—l—vllxlh}. (10)
xeCMN

Since P is convex, efficient solvers can be used, such as iterative shrinkage-thresholding
pursuit [20]. Alternative reconstruction algorithms include greedy-type methods such as
OMP [21, 22], as well as thresholding-based methods [23-25] and the AMP algorithm
[26]. These algorithms can be easily integrated in the framework shown in Fig. 2. How-
ever, the efficiency of this framework is limited as it vectorizes the 2D signal measure-
ment in automotive radar system to a 1D vector of dimension MN.

3.2 Restricted isometry property
In order to successfully recover a good estimate of signal x, the measurement trans-
form matrix W in (10) should satisfy the restricted isometry property [17].

The selection of the measurement transform matrix has been analyzed in [18, 27]. It
is shown that a random partial Fourier matrix satisfies a near-optimal RIP with high
probability [27, 28]. In this work, the theoretical analysis on RIP of the measurement
transform matrix W is further conducted in Lemma 1 and Theorem 1 given in Appen-
dix B. Theorem 1 shows that W satisfies the RIP with high probability.

3.3 Structure of 1D algorithms for RD spectrum recovery
In this subsection we introduce the novel prior-model-based iterative sparsity-pro-
moting algorithms employed in conjunction with the 1D formulation of our interfer-

ence mitigation approach.

3.3.1 Prior-model-based iterative thresholding
When it comes to solving large-scale systems of linear equations often iterative gra-
dient descent methods are employed rather than the Gaussian elimination [29]. The
basic form of the update step of such an iterative algorithm for solving underdeter-
mined systems like (9) and (10) is given by

I Zi’— ‘i’Xt,

- T
xp11 = Ti(x¢ + 0V 1y).
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Here \fITrt = \ilT()Nl — Uxy) represents the gradient of the approximation error (residual
r¢) in the ¢-th iteration of the algorithm. 7, (-) denotes a nonlinear function that promotes
the sparsity of the solution. The parameter 0 < ¥ < 1 influences the convergence speed.
Hard thresholding and soft thresholding have been shown to be two possibilities for the
nonlinear function 7;(-), where 1 denotes the threshold value.

For the algorithms to run as efficiently as possible, the choice of the threshold value
/ is crucial. It can remain constant for all iterations, decrease by a fixed multiplicative
factor in each iteration, or be adaptively adjusted to the signal properties in each iter-
ation. An adaptive adjustment can be derived by considering the gradient term \ilTrt.
Assuming that the values in this term correspond to a Gaussian distribution with zero
mean and standard deviation std (\ilTrt), the threshold is given by

Jo=B- std (¥ 1), (12)

where 8 is the threshold control parameter, typically in the range 2 < 8 < 4 [30]. This
effectively reduces the noise in the representation by assuming that small signal values
are part of the noise.

Since the typical measurement cycle of an automotive radar sensor is around 50
milliseconds [12], the observed movements of the targets in the RD spectra of suc-
cessive measurement cycles are rather small in most application scenarios. Therefore,
the prior information about the positions of the targets can be utilized to expedite the
update steps of the iterative thresholding algorithms described in (11).

Instead of using the standard IST [16, 31] and IHT [32], we incorporate prior informa-
tion into the thresholding process for solving (9) and (10). The prior-model-based soft

thresholding function is defined as:

5;(0:) = sign (6;) max(|6;] — (1 — ¢ (pi)) - 4,0),

fori =0,..,,MN — 1, (13)

where i denotes the index of the elements of vector . The prior probability p; ensures
that if a sparse maximum is likely at the i-th position, the threshold 4 is scaled down
accordingly by (1 — ¢ (p;)). This helps to reduce the number of iterations for searching an
optimal estimate of x and facilitates the detection of local maxima, thereby reducing the
reconstruction error. The mapping function

a-pi+b

(R R {(p) = (14)

is introduced for regulating the prior model, where 4, b, e € R are the control parameters.
Similarly, the prior-model-based hard thresholding function is defined as:

oy SO 16> A =¢p)) - A
Ha®) = {o, 6 < (L= ¢(pi) - 2° a5
fori =0,..,MN — 1,

where i denotes the index of the elements of vector 6.
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3.3.2 Determination of the prior probability
The prior of the presence of the target at the i-th position of x is assumed to follow a
2

normal distribution whose expected value u; and variance o/ are equal to the empirical

mean and variance of the peak values at this position in the latest Q-measurements:
N
P(xz) ~ N(Mi, o; )»l € S: (16)

where & = £y U &1... U £g_1 represents the set of positions of target peaks detected by a
cell averaging constant false alarm rate (CA-CFAR) algorithm in the (original or recov-
ered) RD spectra’ of the latest Q measurements. &y and £o—1 denote the sets of detected
positions of target peaks in the RD spectrum of the current measurement x, and the
measurement at time n — Q + 1, respectively. The prior probability for the presence of
the target at the i-th position (i € &) of the next measurement X+ is determined by x;
in x,). Because the presence of target peaks at other positions (i ¢ &) was not observed in
the latest Q-measurements, the prior probability of the these positions is initially set to
zero. Then, a prior probability matrix P € RN*M can be constructed. However, since the
targets may move slightly in the next measurement cycle, the prior probability should
optimally be propagated from the historical target positions to the neighboring positions
surrounding them. The new prior probability matrix is then recalculated as P = G ® P,
where G represents a 2D window function and ® denotes the convolution operator. p; is
then the i-th element of vec(P).

3.4 Integration of 2D masked residual updates

Since the multiplication of a vector with the Fourier matrix can utilize the fast Fourier
transform (FFT), it can significantly improve the efficiency of recovery algorithms. The
microcontrollers of most automotive radar sensors have an accelerator for FFT pro-
cessing with reduced computational latency. However, the previously discussed radar
interference mitigation framework that vectorizes the radar measurement to match the
general CS framework cannot take advantage of this benefit. More precisely, recalling
the framework illustrated in Fig. 2, by removing the interference-contaminated meas-
urement samples in y, the corresponding rows of the measurement transform matrix W
are pruned. Then, the remaining measurement signal y and the pruned measurement
transform matrix W are used with different CS solvers to compute a sparse solution of X.
Therefore, the FFT operator cannot be directly incorporated. In order to utilize the com-
putational advantage of the FFT, a 2D masked residual updates framework is proposed
that can be easily incorporated into existing CS solvers.

Recalling the residual updates in (11), the choice of ¥ € CTMN and r, € C? have a
clear dependency on the g-rows of interference-free samples. As the positions of inter-
ference-contaminated samples can be random [33], the size of ¥ can vary with inter-
ference scenarios. However, the residual updates always correspond to the remaining
interference-free samples. Therefore, it is possible to control the residual updates using

! The original RD spectrum refers to the interference-free RD spectrum that does not require reconstruction. The recov-
ered RD spectrum refers to the RD spectrum recovered from a distorted measurement, and after recovery, the informa-
tion of the target peaks can be used as prior information for the interference mitigation of subsequent measurement
cycles.
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a mask and to keep the size of the measurement transform matrix fixed. In other words,
by tracking the residual updates at exact positions of the interference-free samples in
y with a mask, the measurement transform matrix will always have the original size of
W e CMNXMN The advantage of a fixed size of the measurement transform matrix is
that the matrix-vector multiplications for Fourier transforms can be replaced by the FFT
or inverse FFT (IFFT) operations on a 2D signal matrix.

After the detection of distorted samples, the position of interference-free sam-
ples in the m-th column of the discrete beat signal matrix Y is stored in an index
vector b, € {0,1}, the value one is used to indicate the position of the interfer-
ence-free samples. Then, by grouping the individual index vectors b,,, a mask matrix
B = [b; - - - bps] € {0, 1}N*M i created. The notation Y[B = 1] then describes the selec-
tion of all elements from Y whose places in B have the value one. We use the notation
Y[B =1] p_.z\g Y for drawing p elements from each of M columns in Y, whose index is
equal to one in B, then storing their elements in Y € C?*™, Since the interference may
generate extended segments of disturbed data in various positions of different chirps,
this operation guarantees the matrix form of the computation during the pursuit of
the sparse solution and it also adds additional randomness to the measurement trans-
form matrix. Correspondingly, we use the notation Z[B = 1] My for indicating the
mapping of elements from each of M columns in Y € C?*™ to the positions in a zero
matrix Z € CN*M, whose indices in B have the value one. The mask matrix B is used for
tracking the residual updates at the exact positions of interference-free samples. Conse-
quently, the update step in (11) becomes

R =Y-— (Yrec[B STt Yt>,
(17)
Xeot =T (X + 9 Wx - Reec - W),
where Yiec = Wi - X¢ WAT,I and Ryec = Z[B = 1] ﬂ R;. We refer to this residual
updates process as 2D masked residual updates.

From Theorem 1 (see Appendix B), it is known that a random row sub-matrix of W
satisfies a near-optimal RIP with high probability. For the analysis of the RIP condition
of the 2D MRU framework, we consider the equation Yyec = Wi - X, - \i(/l\T,[ instead of
the 1D formulation yyec = W - x;. The theoretical guarantee of successful RD spectrum
recovery discussed in Theorem 1 also applies to 2D algorithms, where g is now substi-
tuted by p - M. More concretely, with the help of the mask matrix B, Y; obtains values
from Y only at the selected p positions in each chirp, meaning that the valid updates
of Yyec are preserved in these p - M entries (the same for yyec). In this way, the rows with
the same indices as the indices of these p - M entries are “subsampled” from W in this
particular manner for the 2D case. The advantage of incorporating 2D MRU is that the
matrix-vector multiplications for Fourier transforms can be solved quickly with hard-
ware acceleration in the automotive radar system. Algorithm 1 describes the incorpora-
tion of 2D MRU with prior-model-based IST/IHT (PM-IHT/PM-IST) for RD spectrum
recovery, where ¢ is the threshold parameter of the relative residual update.
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Algorithm 1: 2D MRU PM-IHT/PM-IST for RD
spectrum recovery

Input:

Discrete beat signal Y € CP*xM

Mask matrix B € {0, 1}N*M

Zero matrix Z € CN*xM

Residual: Rg = 0 € CP*XM

Prior probability matrix: P € RV *xM
Output: Recovered RD spectrum X € CNxM
Initialize:

Xo:=7Z _

P=G®P // Calculate prior model
forj=1,...,c0do

Yrec = Wn - X1 V~V1\T/I
R, =Y — (YrCC[B =1 2, Yj) // Update residual
Ryece = Z[B = 1] £ R,
I'=WnN:Rrec - Wn 7’ // Gradient
Aj =B std(T) // Update threshold
if PM-IST then

‘ Xj = 8x, Xj—1+9-I) 1/ Soft thresholding
end
if PM-IHT then

| Xj=Hx Xj—1+9-T) // Hard thresholding
end
it (IR ||7 — [[Rj—1[7)/[IR;l|F < € then

| return X;
end

end

The proposed 2D MRU framework can be easily integrated with other well-known CS
solvers, e.g., fast iterative shrinkage-thresholding algorithm (FISTA) [20], OMP [21], com-
pressive sampling matching pursuit (CoSaMP) [22], YALL1 [34], AMP [26], and general-
ized AMP (GAMP) [35], since these solvers make use of residual updates as well.

3.4.1 Computational complexity

The largest part of the computational effort of the 2D algorithms is taken by the nested FFT
in each case. Since FFT in column direction is performed for all rows of the matrix and FFT
in row direction is performed for all columns of the matrix, the total computational effort
for 2D MRU in each iteration loop can be described by

O(MN log(N) + NM log(M))
= O(MN (log(N) + log(M))) (18)
= O(MN (log(NM))).

The computational effort of 1D solvers in each iteration loop can be described by
O(@MN), where g denotes the number of all undisturbed samples across all chirps.
With the proposed approach the complexity is reduced considerably by a factor of
O(log(NM) /q). Considering a discrete beat signal Y e C!28%25 where 10% samples are
disturbed by interference (i.e., g equals 29491), log(NM)/q ~ 1/6531.
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Fig. 3 a An example discrete beat signal with interference; b The positions of the distorted samples detected
by the Laplacian filter with iterative adaptive thresholding are indicated by 1. For an intuitive visualization, the
amplitude of the measurement in (a) is normalized between —Tand 1

Table 1 Evaluation of interference detection methods

Detection method F-measure (%) Recall (%)
Laplacian filter based thresholding 82.34 7152
[terative adaptive thresholding 81.69 88.20
Combined method 79.00 95.73

) Original - SINR 40.90 dB  (c) Zeroing - SINR 18.55 dB (e) IMATCS - SINR 27.27 dB (g) PM-IST - SINR 96.88 dB dB]
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Fig. 4 a Original RD spectrum, b Distorted RD spectrum and RD spectra recovered by ¢ the zeroing method,
d AR, e IMATCS, fYALLT, g PM-IST, and h PM-IHT, in the case that the number of discarded samples is about
10% of the total measurement

4 Detection of disturbed samples

In [36], a method was presented in which the interference is detected by iterative adap-
tive thresholding. Samples from a signal vector y of length L are considered to be interfer-
ence-contaminated samples when their absolute values exceed a threshold and the detected
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samples are then set to zero. y is used to represent the new signal padded with zeros. Then,
with the number of detected samples D, a new threshold value can be calculated as:

) (19)

where y denotes the control parameter. If the threshold Tp changes more than a prede-
fined value A, the newly calculated threshold is used to detect further interference-
contaminated samples. As soon as Tp changes by less than A7, between two iterations,
the algorithm terminates.

In [10], a classical edge detector, namely, a Laplacian filter [37] is used to identify the
anomalies and the interference-contaminated samples. The Laplacian filter based method
is fast and hardly deletes interference-free samples. Still, it misses some interference-con-
taminated samples, since the Laplacian filter assigns a larger weight to edges. Thus, if the
interference-contaminated samples are grouped, the distorted samples in the middle often
cannot be detected completely. However, this flaw can be compensated by a combination
with the iterative adaptive thresholding detection method. To quantitatively analyze the
detection performance of different algorithms, the recall and F-measure are introduced,
which are calculated as: Recall = TpllriplfN and F = m where TP, FP, and FN
denote the number of true-positive, false-positive, and false-negative estimates.

Since the interference-contaminated samples are the minority in the discrete beat
signal, the F-measure is theoretically more important for evaluating the detection per-
formance. However, in radar interference mitigation with CS, the amount of correctly
detected interference positions has a greater impact on the recovery results. If a small
amount of interference-free samples is accidentally discarded, this results in a small
change in the compression ratio as defined in Sect. 5 and does not have a large impact on
the recovery results. The evaluation results in Table 1 show that the combination of the
two methods can correctly detect about 96% of the interference-contaminated samples.
The combined method is therefore more suitable for interference mitigation with CS
approaches. The undetected 4% of the interference-contaminated samples should have
low amplitudes, as they would otherwise have been detected by the iterative adaptive
thresholding method. Thus, these distorted samples may also generate little additional
noise in the frequency domain and therefore do not affect the weak targets.

Figure 3 shows an example of using this combined detection method to determine
the position of the anomalies. The combined method due to its superior performance in
terms of the true-positive rate (recall) is used in this work for the detection of interfer-
ence-contaminated samples.

5 Evaluation methods and results

In this section, the performance of algorithms incorporating 2D MRU is analyzed and
the evaluation results are further discussed. Firstly, the reconstruction performance
of RD spectrum of real radar measurements is evaluated in terms of the run time and
signal-to-interference-plus-noise ratio (SINR) in comparison with the state-of-the-
art algorithms. Secondly, the time consumption and the relative reconstruction error
are evaluated under different metrics, namely, the compression ratio, the amount of
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remaining interference-contaminated samples used in reconstruction, and the sparsity

level ratio. The compression ratio § and the sparsity level ratio p are defined as
§=p/N, p=k/(MN), (20)

where p is the number of samples selected for reconstruction in each chirp and k
denotes the number of target peaks. For the prior-model-based iterative thresholding
algorithms, the prior probability is determined based on the latest five measurement
cycles (i.e., Q = 5in (16) for evaluations in this work).

5.1 Performance evaluation on real radar measurements

Recent research results have shown that the AR model [6] and CS algorithms like the
iterative method with an adaptive thresholding for compressed sensing (IMATCS) [7]
or the YALLI algorithm [38] provide satisfactory recovery results of the discrete beat
signal for interference mitigation. The performance of these methods along with the
simple zeroing method [1], and the prior-model-based iterative thresholding algorithms
(PM-IHT and PM-IST) are evaluated in terms of the run time and SINR on a real radar
measurement. The real radar measurement is recorded in a test chamber with radiation-
absorbent materials and the targets (at distances of 27m, 50m, 73m, 95m and 120m) are
created by a target generator. The interference is produced by a radar that emits signals
in the same frequency band with a larger slope than the victim radar.

Figure 4 shows the recovered RD spectra after the elimination of the severely distorted
samples (ca. 10% of the total measurement) for four reference algorithms, AR, IMATCS,
YALL1? and the zeroing method, as well as for the proposed prior-model-based iterative
thresholding algorithms. The recovery performance of IMATCS may vary slightly when
different thresholds are selected. It should be clarified that the parameters of IMATCS
for implementation are chosen according to [7], where the value of the highest peak is
used to initialize the linear threshold. The targets in the distorted RD spectrum are hard
to detect, however, the targets in the recovered RD spectra can be found easily. Here,
the threshold parameter of relative residual update € of the CS algorithms is set to 107°.
The AR, IMATCS, and YALL1 algorithms can properly restore the RD spectra, while the
zeroing method produces many artifact peaks. The prior-model-based iterative thresh-
olding algorithms, however, produce superior recoveries. Since the proposed 1D and 2D
prior-model-based iterative thresholding algorithms differ only in their computational
load, the recovered RD spectra of the prior-model-based iterative thresholding algo-
rithms in Fig. 4 are solely presented for the 2D case.

Since the amount of disturbed samples in the discrete beat signal may vary under dif-
ferent types of interference, the robustness of the algorithms will be further evaluated
by eliminating more samples. Table 2 shows the performance comparison of different
algorithms in terms of the run time and SINR for different amounts of interference and
correspondingly discarded interference-contaminated samples. For interference detec-
tion, the combined method discussed in Sect. 4 is used in this evaluation. The run time
of algorithms is estimated with MATLAB based on an Intel(R) Core(TM) i5-8350U

2 The original code implementation of YALLI is available at: http://yalll.blogs.rice.edu/.
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CPU@1.70GHz. It is found that the run time of the algorithms PM-IST and PM-IHT
incorporating 2D MRU is less than 50 milliseconds for a dimension of Y up to 128 x 256,
while the run time of the 1D implementation requires seconds to complete the recovery.
The code implementation of IMATCS? is modified based on [39] in which every itera-
tion step needs the eigenvalue decomposition of the measurement transform matrix.
Thus, the IMATCS algorithm takes more time for recovery as the size of the measure-
ment transform matrix is large. The size of the measurement transform matrix decreases
accordingly when the size of the remaining discrete beat signal decreases. This explains
why the run time of IMATCS decreases as more samples are discarded. The run time of
the zeroing method is instantaneously fast and therefore difficult to measure accurately.
The other advantage of the prior-model-based iterative thresholding algorithms is that

3 The original code implementation of IMATCS is available at: http://ee.sharif.edu/~imat/#downloads.
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they provide superior SINR improvement, since the proposed PM-IST and PM-IHT can
strongly suppress the measurement noise. This can be verified in Fig. 5, where the veloc-
ity cut of the recovered RD spectrum of the target at 73 meter is shown. The signal peak
of the target at 73 m is much easier to detect in the recovered RD spectra provided by
the PM-IHT and PM-IST methods.

5.2 Performance evaluation of 2D algorithms on different metrics

Since different metrics such as the amount of interference-free samples used for recon-
struction, the sparsity level of RD spectrum and the amount of remaining interference-
contaminated samples all have an impact on the performance of different CS solvers
[40], the performance of 2D algorithms are therefore further evaluated under these met-
rics. In this evaluation part, the representative greedy algorithm CoSaMP [22] and AMP
with the proposed 2D extension are also included.

Firstly, the computation time and the mean relative absolute error (MRAE) of 2D algo-
rithms for different compression ratio (20) is examined. The different amount of interfer-
ence-free samples is used to recover the RD spectrum. The value of § is set between 0.1
and 1. For each §, the simulation is repeated fifty times and the threshold parameter € is
set to 1073, The MRAE is defined as the mean of the relative absolute error between the
target peaks in the interference-free RD spectrum X je.n and in the reconstructed RD

spectrum Xyec:

|Xclean [fl, ”7’1] — Xrec (7, 7’7’1]|
|Xclean[f1: m] |

1
MRAE = o Z

’ (21)
Z (nm)ez

where 7 and 1 are row and column indices of the RD matrix, Z is the set of target peaks.
#z denotes the cardinality of set Z.

Figure 6 shows that as more interference-free samples p of the signal are used for
reconstruction, § becomes larger and the time needed for the execution of the algo-
rithms decreases. This is a logical consequence of the fact that the number of candi-

date solutions of an underdetermined system increases and thus more iterations are
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required in order to find an optimal solution when fewer interference-free samples
remain.

Figure 7 shows that MRAE of all target peaks (except for the target peaks recovered
by YALL1, which aims to achieve a high accuracy and therefore also tries to recon-
struct some noise [34]) in the restored RD spectra becomes smaller as the value of §
increases. This shows that the more interference-free samples are left, the more accu-
rately the target peaks will be restored. The proposed PM-IHT and PM-IST further
improve the MRAE of the standard IHT and IST, although the improvements in run
time are not significant. It should be noted that MRAE provides a measure of the res-
toration quality of target peaks, namely the sparse representations. There is therefore
no direct connection between MRAE and SINR, since it is possible that an algorithm
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recovers the target peak with a small MRAE but a high background noise level, so
that the SINR is small.

Since it is difficult to accurately identify all interference-contaminated samples, in
some scenarios few interference-contaminated samples may remain after the inter-
ference detection. Therefore, we secondly evaluate the robustness of the algorithms
in the case that some of the remaining samples contain interference. To simulate the
reconstruction on these scenarios, different interference-free beat signals with an
average sparsity level ratio (o = 0.005) are generated and superimposed with inter-
ference. The simulations are performed with a § that is always adjusted to use the
maximum number of interference-free samples for reconstruction. Amounts of inter-
ference-contaminated samples between 0.1% to 15% of total remaining samples are
tested. Since the distorted sample usually contains larger amplitudes, it changes the
SINR of the RD spectrum of the input data. Empirically, it is shown that when the
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spectra recovered by d Standard IHT and e PM-IHT

percentage of distorted samples in Y ranges from 0.1 to 15%, the SINR (originally ca.
32 dB) decreases accordingly by a value ranging from 7 dB to 25 dB. Furthermore,
as shown in Fig. 8, the number of iterations increases slightly for all algorithms, as
the increasing interference quantity can influence the search direction of the sparse
solution of the algorithm. Although CoSaMP requires the smallest number of itera-
tions, its run time is still longer than that of iterative thresholding algorithms due to
the relatively long computation time in each iteration. In general, the run time of the
iterative thresholding algorithms is less than 20 milliseconds.

Figure 9 shows that the MRAE of all target peaks also increases slightly with the
amount of remaining interference-contaminated samples. This is due to the fact that
the remaining interference is also used for reconstruction, thus the recovery contains
more errors. Overall, the relative errors are nevertheless low with values below 6%
and CoSaMP has the smallest MRAE. Thirdly, the concordance of the local maxima
and the MRAE of 2D algorithms for different sparsity level (20) is examined. The
value of § is set to 0.5. The sparsity level p is set between 0.001 to 0.1. For each p the
simulation is repeated fifty times and the threshold parameter € is set to 1073, Fig-
ure 10 shows that the MRAE of PM-IHT, PM-IST and AMP increases slightly as p
increases. The value of p has more effect on CoSaMP, and interestingly, the MRAE
of YALL1 decreases while p increases. Another metric worth evaluating is the con-
cordance of the local maxima. It is important to check whether all local maxima are
reconstructed, since the local maxima represent the individual targets. Moreover,
for radar target tracking, the position of targets in the RD spectrum is decisive. To
generate an evaluation criterion from this context, all local maxima are determined
in the RD spectrum of the interference-free signal as well as in the RD spectrum of
the reconstructed signal. Then, the percentage of the maxima from the interference-
free signal that are present in the reconstruction is calculated. As shown in Fig. 11,
the concordance of local maxima decreases as the sparsity level ratio p increases, i.e.,
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more valid targets are present. The concordance of the local maxima of PM-IHT can
achieve around 86% when p equals 0.1 while concordance of the local maxima of the
other algorithms are still better than 80%. This means that more than 80% of the tar-
gets are still recognizable after recovery. This shows the robustness of these 2D CS
solvers. Note that p is determined by the reference signal without interference, and
p = 0.1 actually corresponds to a large number of target peaks, since the denominator
in p (see (20)) is large.

5.3 Discussion

In comparison with the 2D framework, the 1D framework is limited not only in compu-
tation time but also in hardware resources in terms of memory, since the measurement
transform matrix W typically has a large size. For example, for a radar measurement of
dimension Y € C°12%128 [4], where 10% samples of the total measurement are distorted,
the corresponding matrix W e C28982x65536 hecomes excessively large. In contrast to the
1D case, the 2D framework avoids additional memory for the measurement transform
matrix by utilizing the built-in FFT operator. Although 2D MRU can also be integrated
into the baseline method YALLL], its performance in terms of SINR and the run time is
still worse than the greedy algorithms (CoSaMP) and the proposed prior-model-based
iterative thresholding algorithms in general. The prior-model-based IHT shows its
robustness both in the evaluation of real radar measurements and in the evaluation of
CS metrics. Its run time can be even faster when the threshold parameter € is relaxed to
1072, for example.

Besides the benefits in terms of run time and reconstruction error, the prior-model-
based iterative thresholding algorithm also has the potential to help in the reconstruc-
tion of weak targets. As shown in Fig. 12, a weak target (within the red dashed square
with a power of ca. 5 dB) is slightly shifted from its position in Fig. 12c to the new posi-
tion in Fig. 12a. Since its power is relatively close to the background noise compared to
the other target peaks, which range from about 7 dB (bottom left) to 37 dB (top left),
it cannot be properly reconstructed with the standard IHT algorithm. However, in the
prior-model-based IHT, due to the presence of the target peak (ca. 9 dB) in the previ-
ous measurement, the probability of the presence of the target in the red dotted square
area is increased for the next measurement cycle (namely, the probability of the presence
of the target is propagated to the whole red dotted square area by convolution with a
window function) and the thresholds for this area are decreased accordingly. This weak
target is therefore properly reconstructed, and in the meantime, the false-positive prior
information does not affect the reconstruction result, as shown in Fig. 12e.

Thus, the proposed 2D framework in conjunction with prior-model-based IHT can be
a good candidate for automotive radar interference mitigation.

6 Conclusion

In this paper, an effective 2D masked residual updates compressive sensing frame-
work as well as the prior-model-based iterative thresholding algorithms are proposed
for automotive radar interference mitigation. 2D masked residual updates can be easily
incorporated into the state-of-the-art compressive sensing algorithms and reduces the
computational complexity of these algorithms. In particular, the proposed 2D masked
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residual updates helps these algorithms to take advantage of hardware acceleration for
FFT/IFFT operations and thus massively reduces the run time for RD spectrum recon-
struction. The theoretical analysis shows that the proposed framework can successfully
reconstruct the RD spectrum with high probability. The superiority of the proposed
framework in terms of the run time and SINR is demonstrated by incorporating the
2D masked residual updates into several baseline compressive sensing algorithms. It is
shown that the proposed prior-model-based iterative thresholding algorithms improve
the reconstruction results of these algorithms in terms of run time and reconstruction
error. The robustness of the proposed prior-model-based iterative thresholding algo-
rithms in conjunction with the 2D framework is also investigated in terms of several
compressive sensing metrics. To improve the prior model, more sophisticated statistical
models may be explored in future works.

Appendix

Proof of Lemma 1

Definition 1 (DFT matrix and IDFT matrix). The DFT matrix Wy € CN*N is defined
as the unitary matrix

1 1 1 . 1
1 a)]l\, a)zzv e wg\\[[_l
1 2 4 2(N-1)
Wy = 1 oy N Wy
VN . . . .
1 w%_l w]Z\[(N—l) o w}(\]{\[—l)(N—l)

where wy := exp (—%) is the N* root of unity. The IDFT matrix Wy € CN*N can be

obtained by replacing the wx with w}; := exp (%)

Lemma 1 Given two unitary IDFT (or DFT) matrices W € CN*N gnd Wy € CM*M,
the Kronecker product of these two IDFT (or DFT) matrices W =Wy @ Wy is also a
unitary matrix.

Proof Since the IDFT (or DFT) matrices Wy € CMXM and Wiy € CNXN are
both invertible, also their Kronecker product W =Wy ® Wy is invertible [41]
and W1 =(Wn®Wyx)! =\’~(/1;[1®\’~(/§1. As shown in Definition 1, W and
Wy are both unitary matrices, thus Wi; = Wy and Wi = Wy'. As conju-
gate transposition is distributive over the Kronecker product, it follows that
Wl = Wf(,[ ®V~(/§] = (Wym ® Wn)* = W* This means that W is a unitary matrix. (]

Proof of Theorem 1
Definition 2 A complex matrix A € CM*N satisfies the restricted isometry property of
order k with restricted isometry constant §; > 0, if
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1 =dplIxll2 < [[Ax][l2 = (1 + 8)lx][2 (22)

holds for any k-sparse signal x.

Theorem 1  Given are

o two unitary IDFT (or DFT) matrices W € CNN g3d Wy € CM>M,
o the matrix W = Wy @ Wy with W € CMNxMN satisfyingI|W| lo < O(1//MN);

 a sufficiently large MN and k, a sufficiently small §; > 0.

For some q = O(logz(l/ék)z?k_2 k- logz(k/ék) -log(MN)), let Ve COMN pe g
matrix whose q rows are chosen uniformly at random, and independently from the

rows of /MN]q-W. Then, matrix ¥ satisfies the RIP of order k with probability
1— 279(10g(MN)'IOg(k/5k)).

Proof From Lemma 1, it is known that the Kronecker product of two IDFT or DFT
matrices results in a unitary matrix. [28] gives the proof that random sub-matrices of
unitary matrices satisfy a near-optimal RIP with high probability. Combining Lemma 1
and the proof in [28], we can draw the conclusion of Theorem 1.
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