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1  Introduction
Electricity is crucial to build the social economy, where its consumption and generation 
can affect the overall policy of one country [1]. In the past decade, thanks to the develop-
ment of smart grid and intelligent meters, the power systems became more intellectual-
ized and robust. Accordingly, the efficiency of energy utilization got rise and tactics of 
power scheduling was more reasonable. However, due to the increase in electricity con-
sumption and the rise in electricity prices, the electricity charge brought considerable 
economic burden to the populace and enterprises [2]. Thereby, the problem of electricity 
stealing [3] became more severe which may lead to a great economic loss for one coun-
try. To solve this issue, amounts of research on effective detection methods have been 
studied and, among them, two types of ideas are popular, i.e., to monitor the physical 
characteristics of meters, or to analyze features of electricity data.

For the first type thought, the data of the smart meters are tampered illegally and 
the detection methods are supposed to find the abnormal data. According to types 
of electrical parameters, the electricity stealing methods can be divided into five cat-
egories [4], i.e., under-voltage stealing, under-current stealing, phase shift stealing, 
spread stealing, no-meter stealing. For the first three kinds of methods, the common 
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approach is to improve the structure of intelligent meters whose threshold value of 
each electrical parameter is set, e.g., [5, 6]. As for the latter two methods, the com-
mon approach is to monitor the changes of electricity consumptions with networks, 
e.g., [7, 8]. However, because the electricity data are varied and redundant, the men-
tioned approaches are hard to achieve synchronous transmission and efficient man-
agement in energy systems, and meanwhile, their ability of abnormal data detection 
is limited.

To handle these issues and improve the capability of detection, the second type 
thought attracts wide attention. The core idea of these methods is that the electricity 
data are collected in energy systems and its features are analyzed with various algo-
rithms. In the beginning, the energy systems mainly calculate the line loss rate (LLR) 
[9] to determine whether users steal electricity. However, because of the massive data, 
this method brings heavy workload to energy systems, which makes detection effi-
ciency become low. To handle this issue, some new techniques, e.g., grey model (GM) 
[10, 11] and neural network (NN) [12, 13], are adopted to predict LLR automati-
cally, but the detection models are still limited by the downside of LLR. It means that 
only long-term electricity stealing can be identified, while the short-term electricity 
stealing cannot be detected. Subsequently, various studies concern more about the 
features of electricity data rather than LLR. Specifically, paper [14, 15] utilizes sup-
port vector machines (SVM) to seek for the hyperplanes which can distinguish ordi-
nary users and electricity stealing users. Paper [16, 17] adopts long and short-term 
memory (LSTM) network to study the time characteristics of electricity data and 
achieves anti-electricity theft load. Paper [18, 19] leverages convolutional neural net-
work (CNN) to deeply learn the features of electricity data, and the electricity stealing 
users can be identified accurately with these features. Although the mentioned meth-
ods can recognize electricity stealing users with kinds of features gotten from training 
process, when the total amount of stolen electricity is small or its change does not 
have strong regularity on time, the performance of these methods drops dramatically.

From the above description, we know that kinds of detection models have been pro-
posed and the ability to detect electricity stealing has been improved. However, for the 
small scale of electricity stealing or the stealing behaviors is not strongly related to the 
time, the existing methods do not work well on the electricity stealing detection. Thus, 
in this paper, we put forward a timing shift-based bi-residual network (TS-BiResNet) to 
consider the features of electricity data on three aspects, i.e., shallow features, deep fea-
tures and time factor. The main contribution of this paper is fourfold as follows:

•	 Owing to the fact that electricity stealing data are difficult to acquire, we first ana-
lyze the distribution of a real electricity dataset without any electricity stealing 
behaviors. Then, we generate specific electricity stealing data based on the distri-
bution of a real electricity dataset and the principle of electricity stealing. After 
preprocessing, the obtained hybrid dataset, composed of real electricity data and 
specific electricity stealing data, can be used for the training and testing of our 
detection model.

•	 In order to consider the deep features of electricity stealing data, we redesign the 
residual network (ResNet) detection model for the hourly electricity data within 
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one week. The model leverages shortcut connections to preserve shallow features 
so that the issue about vanishing gradient can be avoided during deep learning 
process and this model is fit for the detection of small-scale electricity stealing.

•	 To make the model applicable to the electricity stealing users with varying tempo-
ral correlation, we propose timing shift (TS) preprocessing and improve ResNet to 
a two-layer structure, i.e., Bi-ResNet. For the former, the electricity data in different 
periods can be selected by the same convolution kernel. From which, the time factor 
is no longer restricted by the time interval. For the latter, the convolution kernels of 
different sizes are used in the same layer, so that Bi-ResNet model can extract time 
features with different durations.

•	 To further analyze the performance of TS-BiResNet model, we perform numerical 
evaluations via simulations. The simulation results show that the accuracy of our 
proposed model is higher than that of existing work. Meanwhile, this model can also 
detect the electricity stealing users whose scale of stolen electricity is small or time 
periods of electricity stealing are not regular.

The rest of this paper is organized as follows. In Sect. 2, we first analyze the distribution 
of real electricity dataset based on hourly electricity data and time interval and then gen-
erate specific electricity stealing data. In Sect. 3, the Bi-ResNet model is put forward and 
its input data are preprocessed by the TS preprocessing in Sect. 4. The performance of 
our proposed model is verified by simulation results in Sect. 5. Finally, we draw conclu-
sions in Sect. 6.

2 � Problem formulation: electricity stealing data
It is known that electricity data are often confidential due to the state secrecy provisions 
[20], which means that the real data are hard to be obtained by the populace. For this case, 
we take the open-source dataset provided by National Renewable Energy Laboratory [21] 
as the original data S, Denoted as D1. This dataset contains the hourly electricity data of 
936 users, i.e., S = {s1, . . . , s936} . For each user k , ∀k ∈ {1, . . . , 936} , it records the elec-
tricity data within 1 year, i.e., sk = {sk ,1, . . . , sk ,365} , and for any day d, ∀d ∈ {1, . . . , 365} , 
there are 24 hourly electricity data within it, i.e., sk ,d = {sd,1, . . . , sd,24} . However, in this 
dataset, no electricity stealing users are available there. To make the data suitable for the 
detection models, we first analyze the real electricity dataset and then provide a uni-
versal method to generate electricity stealing data. Thus, we randomly select the hourly 
electricity data of 400 users in half a year, i.e., Sselected ∈ C

168×26×400 . From which, 168 is 
the quantity of hourly electricity data within 1 week, 26 denotes the amounts of weeks 
within half a year, and 400 presents the number of all selected users. For convenience, we 
abbreviate Sselected as S. The statistical results of S are shown as Figs. 1 and 2.

Figure 1 presents the statistics of hourly electricity data for all users within half a year. 
It indicates that, although the range of hourly electricity data is wide, i.e., from 0.4 to 6, 
its values are mainly concentrated between 0.4 and 2.3, especially around 1. It means 
that when the amount of stolen electricity account for a tiny proportion of the electric-
ity consumption during period of time, e.g., 10% or 20%, the value of electricity detected 
by energy systems is still within the normal range and it does not slump rapidly. For this 
case, the stealing users are hard to be detected so that deep features are desired.
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Besides, we further analyze the distribution of hourly electricity data on the basis of 
time period. Figure 2 shows that the electricity behaviors of all users are correlated with 
time. Specifically, in the wee hours, i.e., from 10:00 p.m. to 6:00 a.m., the distribution of 
electricity consumption is concentrated and its value is relatively small. For this case, the 
range of electricity stealing is limited and behaviors are easy to be detected, where the 
traditional detection methods and neural network-based methods can detect the elec-
tricity stealing users successfully. In the morning and at noon, i.e., from 6:00 a.m. to 4:00 
p.m., the amount of electricity consumption is rising and the variance becomes large. 
For this case, electricity stealing is relatively easy to be detected but some traditional 
detection methods will fail. As for the last case, i.e., from 4:00 p.m. to 10:00 p.m., the 
electricity consumption of all users reaches its peak, and its distribution is the most scat-
tered. At this moment, the electricity stealing is the most difficult to be found. Herein, 
we focus on the latter two cases, i.e., electricity stealing behavior is relatively difficult to 
be detected.

Based on above analysis, we randomly preprocess 150 users out of selected 400 
users as the electricity stealing users. From which, the original data are divided into 

Fig. 1  The statistics of hourly electricity data
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Fig. 2  The distribution of hourly electricity data
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two parts, i.e., S = {Sreal, Sstl} , where Sreal ∈ C
168×26×250 is the real electricity data 

and Sstl ∈ C
168×26×150 is the specific electricity stealing data. According to the [4], the 

electricity stealing methods can be equivalent to the product of electricity consump-
tion and a stealing weighting factor. Thus, we define the weighting factor as electricity 
stealing coefficient (ESC) and stipulate that the value of ESC ranges from 0.2 to 1, i.e., 
ESC ∈ (0.2, 1) . Meanwhile, we further define the duration of electricity stealing as elec-
tricity stealing period (ESP). Considering the possibility of stealing electricity shown in 
Fig. 2, the ESP is expressed as

where r(·) is the random function which returns an array. Herein, the electricity stealing 
function is designed as

where ⌊∗⌋ is the round down operation. Herein, we can get the hybrid dataset 
S̄ = {Sreal, S̄stl} which is composed of real electricity data Sreal and specific electricity 
stealing data S̄stl , as shown in Table 1.

Notice that, electricity stealing users with different ESC come from the same users in 
original dataset. For each experiment, only ordinary users and electricity stealing users 
with one kind of ESC are selected. This operation can reflect how the ESC and ESP affect 
the accuracy of electricity stealing detection.

3 � Method: Bi‑ResNet model
After getting the hybrid dataset composed of real electricity data and specific electricity 
stealing data, various detection models can be adopted [9–19]. However, due to two fea-
tures of S̄ , i.e., small scale of electricity stealing and random coherence with time, the per-
formance of these models is not optimal and deep features are needed. In the process of 
seeking for deep features, the value of electricity consumption data is small and its change 
trend is usually gentle. For this case, if we take neural networks with multiple layers, the 
vanishing gradient [22] will affect the performance of detection models. Aiming at this 
issue, ResNet model [23] attracts wide attention. It adds some shortcut connections to pre-
serve shallow features so that the problem of vanishing gradient can be solved. However, 
the performance of ResNet is still not optimal, because every time when the convolution 

(1)ESP = r({6, 22}),

(2)f (sk ,i) =

{

ESC× sk ,i, (182− ⌊i/7⌋ × 7) ∈ ESP
sk ,i, (182− ⌊i/7⌋ × 7) /∈ ESP

,

Table 1  Hybrid dataset composed of real electricity data and specific electricity stealing data

Type Application Size Quantity ESC ESP

Ordinary Training 168 5200 None None

Testing 168 1300 None None

Stealing Training 168 2600 0.2 r({6, 22})

Testing 168 1300 0.2 r({6, 22})
· · · · · · · · · · · · · · ·

Training 168 2600 0.9 r({6, 22})

Testing 168 1300 0.9 r({6, 22})
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kernels extract features of electricity data, the obtained information is limited. Therefore, in 
this paper, we introduce feature-map attention [24] and then propose Bi-ResNet.

3.1 � Unit block of Bi‑ResNet

The unit block of Bi-ResNet consists of two kinds of basic components, i.e., convolution 
modules and shortcut connections, and two kinds of logical operations, i.e., copy and vec-
tor addition. Its structure is shown in Fig. 3. For convenient analysis, we further divide the 
unit block into three steps.

For the step 1, the obtained S̄ is first mapped from three dimension to two dimensions 
for the adaption of the input. For the user k on the d-th day, the input data S̄k ,d are changed 
from the sk ,d as follows

When S̄k ,d is put into the network, the copy function cp(·) is taken, which duplicates the 
input data into two same copies

Then, two convolution modules with different size of convolution kernels are taken. Spe-
cifically, each convolution module function i, ∀i ∈ {1, 2} consists of three parts, i.e., con-
volution function conv(·) , batch normalization BN(·) and rectified linear unit function 
relu(·) . We use Hi,size(·) function to represent the i-th convolution model with size × size 
convolution kernel, thereby the i-th pseudo-output Yi is calculated by

Notice that, when two convolution kernels with different sizes are used for the same 
input data, the features can be extracted more thoroughly, that is essential for deep 
features.

For the step 2, we fuse the same feature under different scopes, i.e., convolution modules 
with 3× 3 convolution kernel and 5× 5 convolution kernel and then use one convolution 
module with 1× 1 convolution kernel to extract the deep feature based on the fused fea-
ture. Specifically, we first duplicate the pseudo-output Yi, i ∈ {1, 2} as

(3)S̄k ,d =













sd,1 sd,2 · · · sd,167 sd,168
sd,2 sd,3 · · · sd,168 sd,1
...

...
. . .

...
...

sd,167 sd,168 · · · sd,165 sd,166
sd,168 sd,1 · · · sd,166 sd,167













(4){X1,X2} = cp(S̄k ,d).

(5)Yi = Hi,size(Xi).

(6){Xi×2+1,X(i+1)×2} = cp(Yi).

Fig. 3  The unit block of Bi-ResNet
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After duplicating, Xi×2+1 are connected by a shortcut connection that can maintain the 
shallow feature. As for X(i+1)×2 , they are fused by the va(·) function as

and the deep feature is extracted by the 3-rd convolution model with 1× 1 convolution 
kernel. Accordingly, the 3-rd pseudo-output Y3 is calculated by

To make the pseudo-output contain the deep feature and the shallow feature, we dupli-
cate the Y3 as

and fuse them with the Xi×2+1, i ∈ {1, 2} which come from shortcut connections, calcu-
lated by

Herein, we get two set of excellent pseudo-output with hybrid features. One is the fea-
ture that maintains the shallow feature gotten by 3× 3 convolution kernel and mean-
while contains more attentive and deep feature gotten by 5× 5 convolution kernel. On 
the contrary, the other one maintains the shallow feature gotten by 5× 5 convolution 
kernel and contains more attentive and deep feature gotten by 3× 3 convolution kernel.

For the step 3, the features of pseudo-output va(Xi×2+1, Xi×3+1), i ∈ {1, 2} are 
extracted by two convolution modules with 5× 5 convolution kernel and 3× 3 convolu-
tion kernel. The pseudo-output Yi+3, i ∈ {1, 2} is calculated by

Then, the Yi+3, i ∈ {1, 2} are merged again with va(·) function and 6-th convolution 
model with 1× 1 convolution kernel, expressed as

Notice that, Y6 is the final output of the Bi-ResNet’s unit block and, compared with the 
input data S̄k ,d , its dimension is reduced by 6, i.e., from 168× 168 to 162× 162.

3.2 � Framework of Bi‑ResNet

After a series of mixed and cross-learning, the final hybrid feature contains various deep 
features and shallow features with different levels of attention, thereby the vanishing gra-
dient disappears and deep features are obtained. Herein, the framework of Bi-ResNet is 
developed, as shown in Fig. 4.

(7)va(X4,X6) = 1/2× X4 + 1/2× X6,

(8)Y3 = H3,1(va(X4,X6)).

(9){X7,X8} = cp(Y3),

(10)va(Xi×2+1,Xi×3+1) = 1/2× Xi×2+1 + 1/2× Xi×3+1.

(11)Yi+3 = Hi+3,size(va(Xi×2+1,Xi×3+1)).

(12)Y6 = H6,1(va(Y4,Y5)).

Fig. 4  The framework of Bi-ResNet
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Considering that the input data of detection model are the hourly electricity data 
within one week, we design Bi-ResNet which contains the 3× 3 convolution kernel, 5 
Bi-ResNet blocks, 4 maxpooling layers with stride 2, 1 maxpooling layer with stride 1, 
and some traditional components of CNN [25]. Specifically, due to the fact that shallow 
features are important but relatively easy to extract, we first pick a convolution kernel 
with smaller size, i.e., 3× 3 , and Bi-ResNet block is unnecessary for this step. Then, we 
use Bi-ResNet blocks and maxpooling layers to extract deep features. Notice that, when 
the input data are processed by the Bi-ResNet blocks, maxpooling layers with stride 2 
and maxpooling layers with stride 1, the size of output data is reduced by 4, halved, and 
reduced by 1, respectively. Therefore, a hourly electricity data with the size of 168× 168 
are put into the Bi-ResNet and the output data with the size of 6× 6 can be obtained 
after maxpooling 5. Subsequently, the type of hourly electricity data will be determined 
by the fully connected layer, and classification layer distinguishes whether the user steals 
electricity.

4 � Method improvement: timing Shift Preprocessing
For the hourly electricity data, our proposed Bi-ReNet model can take both the deep fea-
tures of electricity data and time factor into account, so the prediction results related to 
the electricity stealing users are accurate. However, the learning of time factor is not suf-
ficient. Taking a 10× 10 input data and 3× 3 convolution kernel for instance, the convo-
lution process is shown as Fig. 5.

Due to the fact that the size of convolution kernel is fixed, the width of each convolu-
tion is the same and the vertical interval will not change. This means that neural net-
works can only learn the features of time factor with respect to the same time period, 
e.g., 1, 2, 3 corresponding to 3 hours and time interval, e.g., 1, 2, 3 1, 10, 19 correspond-
ing to per 9 h. To handle this issue, we propose timing shift algorithm and its specific 
process is shown in Table 2.

Notice that, the value of stride st is randomly selected from 0 to 23 due to the features 
of electricity stealing behaviors, i.e., the time period for electricity stealing will change 

Fig. 5  The process of convolution
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based on date. For this case, we should extract the features of different dates and time 
periods, so that the combination of different time periods is considered.

5 � Results and discussion
In this section, we present numerical results on three aspects, i.e., the training process 
of TS-BiResNet model, the accuracy of detection, and the further discussion about gen-
eralization ability. The first part verifies that TS-BiResNet model is fit for the detection 
of electricity stealing and its training process is completed successfully. For the second 
part, it evaluates the performance of the proposed model by comparing it with four 
benchmark models, i.e., LSTM model [16], Bi-ResNet model [26], gated recurrent unit 
(GRU) model and combined convolutional neural network and LSTM (CNN-LSTM) 
model [27, 28]. The simulation results are presented as Figs. 6 and 7, respectively. Then, 
the issue about generalization ability is discussed and analyzed with two additional data-
sets, whose simulation results are presented in Table 3.

5.1 � Training process

Figure  6 is the training process of the TS-BiResNet model with different values of 
ESC. We take the situation that ESC = 0.8 as an example to analyze the training pro-
cess of the model. Since the curves, i.e., the accuracy and the loss function, share the 

Table 2  Timing shift algorithm

Fig. 6  The training process of TS-BiResNet model with different value of ESC. a ESC = 0.2, b ESC = 0.3, c 
ESC = 0.4, d ESC = 0.5, e ESC = 0.6, f ESC = 0.7, g ESC = 0.8, h ESC = 0.9
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same variation trend, we only analyze the curve of accuracy. The figure reflects that 
shallow features and deep features of the hourly electricity data coexist and both of 
them can be learned by TS-BiResNet model. Specifically, the accuracy of detection 
soars into 65%, while the accuracy fluctuates around this value for several epochs. 
This is because we take 3× 3 convolution kernel to find the shallow features but this 
kind of preliminary detection is ineffective due to the fact that the value of ESC is 
large, so that deep features are desired. After long training, the accuracy of detec-
tion increases sharply at the time integration =  450, reaching 80%. Then, its value 
rises gradually and reaches the peak around 98%. It indicates that deep features have 
great impact on the accuracy of detection and these features can be found by the TS-
BiResNet model. Overall, the two curves are convergent, which means that the pro-
posed model is suitable for detecting electricity stealing users in the dataset D1, and 
there is no problem about over-fitting and under-fitting during prediction process.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

TS-BiResNet
BiResNet
CNN-LSTM
GRU
LTSM

Fig. 7  The prediction accuracy of five models

Table 3  Comparison of prediction accuracy for three datasets

Dataset ESC TS-BiResNet (%) Bi-ResNet (%) LSTM (%) GRU (%) CNN-LSTM (%)

D1 0.6 98.50 92.35 91.67 90.33 90.67

0.7 98.15 91.50 84.67 87.00 87.00

0.8 90.85 81.50 84.33 85.33 85.67

0.9 81.96 65.92 75.00 54.67 72.33

D2 0.6 83.08 82.67 NONE NONE 73.50

0.7 82.60 80.00 NONE NONE 70.25

0.8 78.27 73.25 NONE NONE 58.67

0.9 63.94 60.93 NONE NONE 52.33

D3 0.6 95.85 93.67 91.00 92.67 87.33

0.7 93.15 90.25 87.67 85.67 81.00

0.8 90.65 81.27 68.93 75.33 66.33

0.9 67.54 60.77 62.67 56.33 52.67
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5.2 � Prediction accuracy

Figure  7 is the performance comparison between the TS-BiResNet model and four 
benchmark models in terms of prediction accuracy. According to the mentioned analy-
sis, we set the value of ESC ranges from 0.2 to 0.9. It verifies the TS-BiResNet model has 
capability to detect electricity users for extreme situations, i.e., the total amount of sto-
len electricity is small or its change does not have strong regularity on time. In general, 
the accuracy of all models is declined with the increase in ESC, this comes from the fact 
that the value of electricity stealing data becomes closer to the value of ordinary data, so 
that the features of electricity stealing users are difficult to be found. Specifically, when 
the value of ESC ranges from 0.2 to 0.5, the features of electricity stealing users are rela-
tively obvious. Thereby, the accuracy of TS-BiResNet model, BiResNet model and CNN-
LSTM model is very high, more than 98.0%, which exceeds the accuracy of other two 
models more than 5%. The reason for this phenomenon is that these three models learn 
features of electricity stealing while the other does not. Notice that, when the value of 
ESC reaches 0.5, the accuracy of BiResNet model and CNN-LSTM model decrease dra-
matically. This is because BiResNet model and CNN-LSTM need to extract the shallow 
features of electricity stealing for prediction, while the shallow features are difficult to 
be found and deep features are desired. When ESC ranges from 0.6 to 0.7, although the 
performance of BiResNet model deteriorates due to the inconspicuous shallow features, 
it is still superior to the performance of other four models. Besides, when ESC ranges 
from 0.7 to 0.8, the accuracy of TS-BiResNet model and BiResNet model experiences 
a great decline. This is because the shallow features disappear due to the distribution 
of electricity consumption data, so that only deep features and time factors can be used 
for the detection. It is worth noting that the performance of GRU model is greater than 
that of Bi-ResNet model when ESC = 0.8. The reason for this phenomenon is that GRU 
model can utilize the temporal correlation of data rather than make use of shallow fea-
tures, so that its performance is close to the GRU model and LSTM model. At this time, 
the performance of CNN-LSTM model, GRU model and LSTM model is greater than 
that of Bi-ResNET but worse than BiResNet model. Last but not least, the TS-BiResNet 
model is able to detect electricity stealing users even when the value of ESC is 0.8 and 
0.9, reaching 90.8% and 81.9% accuracy, respectively. It shows that the TS-ResNet can 
learn deep features and time factors for users with small scale of electricity stealing and 
varying temporal correlation, and its performance is better than that of four benchmark 
models. (When ESC = 0.9, the performance of GRU model deteriorates because of its 
model structure)

5.3 � Further analysis

Based on the above analysis, we get the conclusion that our proposed TS-Bi-ResNet 
model can achieve detection for the users with small scale of electricity stealing and var-
ying temporal correlation. However, it is worth noting that the convergence of model is 
a necessary condition for overfitting problem, and the generalization ability should be 
further proved. Thus, we further introduce two different datasets [29] and [30], denoted 
as D2 and D3, respectively.

In specific, D2 is a dataset consisting of the hourly electricity data of 32 users within 
half a year. Compared with the dataset D1, we can verify that whether our proposed 
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model is suitable for small dataset. This is because D1 and D2 have some similar charac-
ters, i.e., they are, respectively, taken from the residential users within a limited region, 
which means that the difference among the maximum value of each user is small. 
Besides, for each user, the habit with respect to the electricity consumption is the same 
as the others, which means that the distribution of electricity consumption is similar. 
However, the scale of D1 is 10 times larger than D2, so that D2 is a small dataset.

As for D3, it is a dataset containing the hourly electricity data of 913 companies within 
half a year. Compared with the dataset D1, we can analyze that whether our proposed 
model is fit for the dataset with various individual differences. This is because, although 
the data of companies are taken from the same region, the scale and habit of electricity 
consumption are varied, e.g., for company A, the scale of electricity consumption may be 
10 times larger than company B, and meanwhile, company A’s peak electricity consump-
tion is in the morning, while Company B’s peak electricity consumption is in the after-
noon. In general, compared with D1, D3 is a dataset with large individual differences.

For these three types of datasets, we carried out simulations, respectively, and the 
simulation results are shown in Table 3. It indicates that, for the small dataset D2, the 
performance of all models decreases sharply. It means that recurrent neural network 
(RNN)-based prediction model and deep neural networks (DNN)-based prediction 
model are not fit for small sample classification or prediction, especially for the former. 
This is because LSTM and GRU require temporal depth and regularity, that is to say the 
scale of the data should be large and the data should be temporally correlated. In com-
parison, although the prediction effect of the TS-BiResNet and Bi-ResNet model is not 
good enough, when the value of ESC is low, e.g., 0.6 or 0.7, they can still achieve a cer-
tain accuracy of detection, around 80% . As for the D3 dataset with large individual dif-
ferences, the performance of different models varies greatly. In specific, when the value 
of ESC is low, e.g., 0.6 or 0.7, the performance of the models is similar to the case in 
D1, except for the CNN-LSTM model. The reason why the performance of CNN-LSTM 
model drops dramatically is that it tries to get the correlation of the same moment in 
different weeks, rather than finding the relationship between the current moment and 
the next moment. However, it seems that there is no regulation can be found so that 
CNN-LSTM model does not perform well. Besides, when the value of ESC is 0.8, the 
performance of TS-BiResNet and Bi-ResNet model maintains good performance, reach-
ing 90.65% and 81.27% , respectively. It proves that our proposed model has capability 
to detect electricity stealing users even if they have significant individual differences, 
but other models cannot. However, this advantage is not kept when ESC is 0.9, in other 
words, the detection of all models fails. This is because the individual difference is so 
huge that the models cannot determine whether it is individual difference or electricity 
stealing behaviors. In general, for large-scale datasets, our proposed model can effec-
tively detect electricity stealing users, proving its generalization, while the performance 
of the detection regarding to small-scale datasets should be improved.

6 � Conclusions
For electricity stealing detection, we first analyze the distribution of the real electricity data-
set and behaviors of electricity stealing. Based on this, we generate be the hybrid dataset 
composed of real electricity data and specific electricity stealing data. To detect electricity 
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stealing users, we design Bi-ResNet model for learning deep features of electricity data. 
Then, we propose the TS-Bi-ResNet model which takes time factor into consideration. 
Simulation results show that our proposed model can achieve detection for the users with 
small scale of electricity stealing and varying temporal correlation. Meanwhile, its detection 
accuracy is roundly superior to the four benchmark models. Its generalization ability is fur-
ther discussed and simulated with two additional datasets.
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