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1  Introduction
1.1 � Background and significance

Visual localization is the technique of estimating a camera pose, that is, position and ori-
entation in a scene. As a critical task in computer vision and robotics, visual localization 
has been widely studied in various domains, including Structure from Motion (SfM), 
Simultaneous Localization and Mapping, and Augmented Reality. It can provide loca-
tion service in areas (e.g., indoor) where other localization techniques such as the Global 
Positioning System (GPS) fail to work, without worrying about losing signals from exter-
nal infrastructure.

Classic visual localization methods follow a 3D structure-based approach [1–4]. 
They first find matches between local features [5–8] extracted from a query image and 
3D point clouds of the scene obtained from SfM. The resulting correspondences are 
then used to estimate the camera pose by applying an n-point-pose solver. In recent 
years, learning-based algorithms have become popular with the success of deep con-
volution neural networks (CNNs). The CNN can generate a representation (i.e., a vec-
tor) of a scene based on a learned network model. Based on this, the absolute pose 
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estimation (APE) approach [9–12] attempts to learn the entire localization pipeline. 
Given a set of training images and their poses, this approach trains a model that 
directly estimates the camera pose from a query image. Both 3D structure-based and 
APE approaches are scene specific: They cannot generalize to unseen scenes and need 
to reconstruct the 3D point clouds or re-train a model for new scenes.

In terms of model construction cost, a more adaptive localization pipeline is rela-
tive pose estimation (RPE) [13–16] that works in two stages. Given a query image, 
an image retrieval routine first returns several closest reference images from the 
database, whose absolute poses are known. The images are represented by compact 
descriptors, so the retrieving algorithm is almost unlimited by the scale of scenes. 
Subsequently, RPE calculates the relative pose of the query image to the reference 
images. Different from APE, RPE focuses on the view difference of two images. As 
such, the neural network model does not need to encode the known poses of the ref-
erence images and is therefore able to generalize to unseen scenes.

We consider the RPE approach, with a more fine-grained treatment of different 
types of information in an image. The design is motivated by the observation that not 
all contents in an image are beneficial to localization. The contents of an image can be 
roughly classified into two categories: reliable contents from static objects and unreli-
able contents from texture-less or moving objects. The RPE method estimates relative 
pose by correlating features that correspond to the same content in an image pair. 
Without a notion of reliability, traditional RPE methods may use unreliable contents 
that cause noise and interference to the localization algorithm.

We propose a novel relative pose estimation pipeline to address this problem. The 
pipeline features two modules, a semantic masking module and an attention module, 
as shown in Fig.  1. The former is a network named BiasNet that attaches a learned 
bias value to each image pixel. Generated by a semantic segmentation of an image, 
the bias values reflect the reliability of each pixel to localization. The second module, 
named AttNet, further refines the features of an image using an attention mechanism, 
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Fig. 1  The proposed relative pose estimate pipeline, with three steps: preparation (orange rectangle), pose 
regression (blue rectangle), and pose hypothesis filtering (purple rectangle). We use a siamese network 
architecture to fuse semantic information and extract features, then estimate relative pose by correlating 
features, and finally predict absolute pose via hypothesis filtering
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aiming to emphasize features that are important to localization. Experimental results 
show the efficacy of our method compared with baseline methods.

To summarize, we make the following contributions:

•	 A new visual localization method based on relative pose estimation. Our work is 
among the first to consider the fine-grained treatment of different types of informa-
tion in an image.

•	 We design a semantic masking module that suppresses potentially interfering objects 
in an image. It exploits the region boundaries generated by semantic segmentation, 
but otherwise does not need prior knowledge of the region category information;

•	 We propose an attention module that refines the image features. It adaptively empha-
sizes features that are important to localization;

•	 Experiments to show that our method outperforms alternative learning-based 
approaches, with reductions of position error by 12.5% and orientation error by 
16.7%, compared to the baseline.

The rest of this paper is organized as follows. Section 1.2 discusses related work; Sect. 2 
describes the localization pipeline; Sect. 3 shows our experimental details; the experi-
mental results and ablation study are discussed in Sect. 4; finally, Sect. 5 concludes the 
paper.

1.2 � Related work

Visual localization approaches can be classified into direct and indirect approaches. The 
former follows a one-stage strategy without the reference image, while indirect localiza-
tion estimates the pose of the query image relative to the reference images after per-
forming the image retrieval step.

1.2.1 � Direct localization

3D structure-based localization. 3D structure-based localization [1, 2, 4, 17] methods 
depend on local feature techniques [5–8], including handcrafted methods and deep 
learning methods. These methods detect points of interest in an image and then produce 
descriptors for each point based on surrounding pixels. The points are matched by com-
paring the Euclidean distance between descriptors.

3D structure-based localization estimates pose based on 2D-3D matches between 
feature points in the query image and 3D points in the scene with an SfM model. This 
approach needs to build a 3D model that requires densely sampled reference images. As 
a result, it has a scalability problem when the scenes grow in size, due to memory con-
sumption and increasing ambiguity in matching.

Image retrieval. Image retrieval [18] is typically used for place recognition, based on 
compact, lightweight descriptors using techniques like VLAD, DenseVLAD, NetVLAD 
[19–21]. It is mainly used for rough localization [20, 22, 23] by approximating the query 
image pose by the poses of the most similar images. Image retrieval is normally used as 
the first step in indirect localization approaches, including ours.
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Absolute pose estimation. The APE methods [9–12] directly regress the absolute pose 
via training an end-to-end CNN model. They learn the complete localization pipeline, 
requiring images and their camera poses as training data. PoseNet [9] is the first end-to-
end network based on the GoogLeNet to regress the camera pose; follow-up approaches 
improve the accuracy with enhanced backbones [10, 11]. The APE methods are signifi-
cantly less accurate than structure-based methods. It is shown that APR is more closely 
related to image retrieval approaches  [23]. Indeed, APE tries to represent the scenes 
implicitly by the weights of networks. Thus, the APE models are scene specific and do 
not generalize to unseen scenes, similar to the 3D structure-based methods.

1.2.2 � Indirect localization

A two-stage localization pipeline first performs an image retrieval step and then esti-
mates the pose of the query image relative to the reference images. The reference images 
have known absolute poses and often have overlapping views with the query image. 
From the absolute pose of the reference image and relative pose between the query and 
reference images, indirect localization obtains the absolute pose of the query image, that 
is, accomplishes visual localization.

Indirect feature-based localization. Indirect feature-based localization relies on local 
features, as with the 3D structure-based methods, except they do not need to build the 
3D points model. By descriptors matching between the query image and similar refer-
ence images, they calculate the essential matrix by triangulation. Sarlin et al. [24] use a 
Graph Neural Network to implement the matching step.

Relative pose estimation. This approach learns to predict relative pose between image 
pairs with an end-to-end trainable neural network model. RPE is also used as visual 
odometry in some work [25, 26]. The RPE model does not encode images’ absolute pose 
information, so need not modification for new scenes [27]. RPE can be less accurate than 
the feature-based approach, so many methods [13–16] have been proposed to improve 
it. Ding et  al. [28] fuses depth information to improve accuracy, but obtaining depth 
information needs a specialized sensor which may be unavailable on many devices. We 
observe that semantic segmentation can generate additional information about specific 
regions’ usefulness to localization, without using extra sensors. We therefore propose a 
new RPE method to take advantage of this observation.

2 � Methods
In this section, we describe our localization pipeline. As shown in Fig.  1, the pipeline 
proceeds in three phases: preparation, pose regression, and pose hypothesis filtering. It 
first performs image retrieval and semantic segmentation and then uses a pose regres-
sion routine to predict a relative pose between a pair of images. Last, it recovers the 
absolute pose from the N relative pose estimates, with a pose hypothesis filtering rou-
tine. For ease of illustration, we show example images in Fig. 2a.

Problem Description. Visual localization is defined as estimating the absolute pose of 
a given query image Iq . (Rq , tq) is composed of a rotation matrix Rq ∈ R

3×3 and a trans-
lation tq ∈ R

3 . Relative pose estimation is the problem of estimating the relative pose 
(Rr→q , tr→q) between one or multiple reference images Ir and the query image Iq . With 
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the relative pose, we can then obtain the absolute pose of the query image based on the 
known absolute poses of reference images.

2.1 � Preparation

Image retrieval. We collect five reference images via 4096-dimensional DenseVLAD 
descriptors, following Zhou et al. [16]. To ensure larger triangulation angles while still 
keeping enough visual overlap for successful relative pose estimation, starting with the 
top retrieved image, we iteratively select the next image that has a distance within [a, b] 
4 meters to all previously selected images. We use the same values as Zhou et al. [16], 
i.e., a = 3 , b = 50.

Semantic segmentation. We perform segmentation to extract region information from 
the query image and the reference images in the database, using the PSPNet by Zhao 
et  al.[29]. PSPNet provides a powerful framework for pixel-level semantic segmenta-
tion with a pyramid pooling module. For each RGB image Ii ∈ R

H×W×3 that has H×W  
pixels, we can execute the PSPNet and then obtain a semantic map S0

i ∈ R
H×W  . Here 

S0
i (x, y)∈C = {c1, . . . , cm} , where C is the set of semantic classes. Figure 2b, e show the 

semantic segmentation results of example images and the colormap of semantic catego-
ries of Cityscapes [9].

To preserve the boundaries of some critical semantic categories, we perform a dilation 
process on a semantic map, inspired by the morphology operation. Specifically, for each 
pixel S(x, y) in the semantic map, if S(x, y) ∈ Cdilation , then we use a 7 × 7 kernel with 
values S(x, y) to replace the 7 × 7 pixels patch whose center is (x, y).

Bias network We propose a small CNN-based bias network which decodes the seman-
tic map to a bias feature map. The architecture of BiasNet is shown in Fig. 3a. BiasNet 
consists of two 3× 3 convolutional layers and one 1× 1 convolutional layer:

(1)Sk
i = Relu(f k(Sk−1

i )),

(a) (b) (c) (d) (e)

road
sidewalk
building
wall
fence
pole
traffic light
traffic sign
vegetation
terrain
sky
person
rider
car
truck
bus
train
motorcycle
bicycle

Fig. 2  Examples of each scene. a Query images. b Semantic segmentation results. c Visualization of prior 
knowledge-based masking. d Visualization of the feature maps S3

i
 (second channel) generated by BiasNet. e 

Colormap of semantic categories for the Cityscapes dataset
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where k = 1, 2, 3 , f 1, f 2, f 3 represent convolutional operations with filter sizes 
3× 3, 3× 3, 1× 1 , S0

i  is the semantic map, S3
i  is the final layer output, and 

S3
i ∈ R

H×W×3 . Figure 2d shows the visualization of S3
i  . Then we perform an element-

wise addition, which is more computation efficient than concatenation, between Ii and 
S3
i  , that is,

where ⊕ denotes element-wise addition, I ′
i ∈ R

H×W×3 , and I ′
i is then fed into the fol-

lowing network. Figure 4 illustrates the process of the element-wise addition, bias values 
reflect the reliability of different categories.

(2)I ′
i = Ii ⊕ S3

i ,

Fig. 3  The architectures of the proposed modules. a The bias network, composed of three convolutional 
layers. b The attention network, composed of a residual network with one Convolutional Block Attention 
Module

Fig. 4  Element-wise addition of Ii and S3
i
 . Various bias values are added to different categories. Note that Ii 

has actually been normalized, for ease of presentation, we display the unprocessed image
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We compare BiasNet with a Prior Knowledge-based Mask method inspired by [30], or 
Prior Mask for short. The method masks certain image regions and reserves the others 
according to semantic categories:

where Cmask is the set of reserved categories that can be manually set. For example, the 
“building” category is normally considered reliable [8] for localization and so is set in 
Cmask . Then we multiply the reference image I ′

i with the mask Mi ∈ R
H×W :

where ⊗ denotes element-wise multiplication, I ′
i is the counterpart of BiasNet results 

in Eq. 2. Figure 2c shows the visualization of Mi , and Fig. 5 illustrates how the element-
wise multiplication implements Prior Mask.

2.2 � Pose regression

We use a siamese neural network [31] to estimate the relative pose between the query 
and reference images. The backbone consists of three modules: feature extraction mod-
ule, feature correlation module, and pose regression module. Figure 6 shows an example 
of inputting an image pair with 448× 448 pixels.

Feature extraction. Different from [13, 16] that extract features by ResNet34 [41] , we 
propose an attention extraction network, AttNet, to extract more distinctive features. 
As shown in Fig.  3b, AttNet consists of a residual network and Convolutional Block 

(3)Mi(x, y) =

{

1, if S0
i (x, y)∈Cmask

0, if S0
i (x, y)/∈Cmask

,

(4)I ′
i = Ii ⊗Mi,

Fig. 5  Element-wise multiplication of Ii and Mi

Fig. 6  Illustration of pose regression
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Attention Module (CBAM) proposed by [32]. The CBAM has shown improvements in 
classification and object detection, and our method confirms its effectiveness in feature 
extraction of visual localization tasks. The input is I ′

i , as obtained in Sect. 2.1:

where F0
i ∈ R

h×w×c , for the 448× 448 pixels image, h = w = 56, c = 128 as shown in 
Fig. 6, ResNet corresponds to the residual network. CBAM sequentially infers attention 
maps in two separate dimensions, channel and spatial, and then the attention maps are 
multiplied with the input feature map for feature refinement:

Then the remaining network:

where F3
i  is the extracted feature of Ii , and F3

i ∈ R
h′×w′×c′ for the 448× 448 pixels 

image, h′ = w′ = 14, c = 512 . Figure 3b illustrates the process of AttNet, and Fig. 7 illus-
trates how attention works.

Feature correlation. After the feature extraction, we obtain two feature maps 
with h′×w′×c′ dimensions from a query image and a reference image, that is, 

(5)F0
i = ResNet(Ii

′),

(6)Nc(F) = σ(MLP(AvgPool(F))+MLP(MaxPool(F))),

(7)Ns(F) = σ(f 7×7([AvgPool(F);MaxPool(F)])),

(8)F1
i = Nc(F

0
i )⊗ F0

i , F2
i = Ns(F

1
i )⊗ F1

i .

(9)F3
i = ResNet(F2

i ),

Fig. 7  Visualization of the feature maps of AttNet. Here Nc(F
0
i
) , Ns(F

1
i
) are feature maps of channel 

attention and spatial attention, respectively. Note we only show 16 channels out of 64 channels



Page 9 of 17Li et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:42 	

F
(3)
i ,F

(3)
j ∈ R

h′×w′×c′ . We use a matrix dot product operation between the feature 
maps to associate two images as [33], which produces a correlation feature map with 
h′×w′×(h′×w′) dimensions that includes information of feature matching, that is,

where c = w′×xj + yj , xi, xj∈{0, . . . , h′ − 1} , and yi, yj∈{0, . . . ,w′ − 1}.
Pose regression. The correlation feature map is fed to regression layers, which consist 

of two convolution layers and one fully connected layer:

where eij ∈ R
9 as shown in Fig.  6. During training, we use mean-square loss function 

to minimize the Euclidean distance between the predicted essential matrix E and the 
ground truth essential matrix E∗ . Note that the essential matrix is a 3× 3 matrix. The 
loss function is:

Here, Less is the loss, eij ∈ R
9 is the vectorized E ∈ R

3×3 . Given the relative pose label 
(R∗, t∗) , the ground truth essential matrix is E∗ = [t∗]×R

∗ , where [t∗]× is the skew-sym-
metric matrix of the normalized translation t∗.

2.3 � Pose hypothesis filtering

The final part of the proposed pipeline is a RANSAC algorithm that estimates the abso-
lute pose of the query image. Consider N reference images Ir = {Ir1, ...,Irk , ...,IrN } , 
we estimate N essential matrices E that encode the relative pose between the con-
sidered image pairs. There are four possible relative poses (R, t), (R,−t), (R′, t), (R′,−t) 
corresponding to a certain E, where R and R′ are related by a 180◦ rotation. We can 
disambiguate the two rotations by comparing the angle difference between the pos-
sible absolute rotations of multiple image pairs. The signs of any direction would not 
change the position of a point triangulated from multiple directions. Therefore, the 
absolute pose of the query image can be uniquely determined by at least two image 
pairs.

We use the RANSAC algorithm to filter hypothesis following [13, 16]. Consider a 
query image Iq and an iteration ps = {Iri, Irj} selected from the reference images set 
Ir , which contains two image pairs ((Iri, Iq), (Irj , Iq)) , where ps ⊂ Ir and 

s = 1, 2, ...,

(

N
2

)

 , 
(

·

·

)

 means combination, and N represents the number of reference 

images. We obtain four absolute rotations RiRIri ,R
′
iRIri ,RjRIrj ,R

′
jRIrj . Two of them 

will be identical in theory, while the two with the smallest angle difference will be 
considered true in practice. Suppose Ri and Rj are consistent by relative rotation, the 
position of the query image can be determined by triangulation from two rays 
cIri + �iR

T
Iri
Riti and cIrj + �jR

T
Irj
Rjtj , where cI denotes the camera center of I  com-

(10)Cij(xi, yi, c) = F
(3)
i (xi, yi)

T
F

(3)
j (xj , yj),

(11)eij = FC(Relu(f 1×1(Relu(f 3×3(Cij))))),

(12)Less(E
∗,E) =

∥

∥e
∗ − e

∥

∥

2
.
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puted by cI = −RT
I
tI , and �i, �j ∈ R define the positions of the points along the rays. 

Notice that we use quaternion to represent the rotation and N = 5 in practice.
For each iteration ps , we estimate an absolute pose hypothesis (RIq , tIq ) of the query 

image as shown above. This gives us 
(

5
2

)

 hypotheses for the query image. Next, we 

determine which image pairs are inliers to each pose hypothesis. For a pair (Irk , Iq) , 
we first determine the rotation Rk that minimizes the angle between the RkRIrk

 and 
the hypothesis rotation RIq . Subsequently, we perform the consistency measure:

where thypo is the relative translation between Iq to Irk calculated by thypo = RIrk

(cIq − cIrk ) . If the angle is below a given threshold αmax , the pair (Irk , Iq) is considered 
an inlier. RANSAC finally returns the pose with the maximum number of inliers. Fur-
thermore, if the number of inliers is not enough, we use the top-retrieved image pose as 
the predicted pose of the query image.

The proposed method is summarized in Algorithm 1.

3 � Experiments
In this section, we describe the evaluation protocol and implementation details of the 
proposed method.

Datasets. We evaluate our method on the Cambridge Landmarks [9] dataset, includ-
ing King’s College, Old Hospital, Shop Facade, and St Mary’s Church scenes. Table 1 and 
Fig. 2a show the spatial extent and example images of four outdoor scenes. We adopt the 
PSPNet [29] as our semantic segmentation model which is pre-trained on the Cityscapes 
[34] outdoor dataset.

(13)α = arccos(
t
T
k thypo

�tk�2

∥

∥thypo

∥

∥

2

),



Page 11 of 17Li et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:42 	

Implementation details. For semantic map dilation and the Prior Mask method, we 
set Cdilation = Cmask = {cbuilding} , since the building category is the most stable and reli-
able basis for localization. Table 1 shows the percentage of the dilated building category 
pixels in the whole image for different scenes. It can be seen that the building category 
occupies most part of the scene images. The masks obtained after dilation and reserva-
tion are shown in Fig. 2c.

We use the same training pairs as Zhou et al. [16] for a fair comparison. AttNet is ini-
tialized with ResNet34 weights pre-trained on ImageNet [35]; the CBAM, BiasNet, and 
regression network layers are initialized with Kaiming initialization [36]. The BiasNet 
is trained with the backbone together. All trained images are first rescaled to 853× 480 
pixels, and then randomly cropped for training and center cropped for testing, both to 
448× 448 pixels, followed by normalization. For ease of presentation, we used 853× 480 
resolution images in all figures. All models are trained with the AdamOptimizer [37] 
with learning rate 1e−4 and weight decay 1e−6 in a batch size of 16 for at most 60 epochs. 
We verify our model every six epochs, sort the results according to the pass rate of the 
test images within the error range of 5m, 10◦ , and use the best one as the final result. The 
code is implemented using Pytorch [38], and all the experiments are conducted on an 
NVIDIA 2080Ti GPU.

4 � Results and discussion
In this section, we discuss the performance results. We first show that the proposed 
approach outperforms the baselines, and then evaluate the impact of each module by 
ablation study; finally we analyze the working principle of each module.

4.1 � Comparison with other approaches

We compare our approach with various methods, including 3D structure-based (3D) 
method [17], image retrieval (IR) [20, 23], absolute pose estimation (APE) [9–12], indi-
rect feature-based localization (IFB), and relative pose estimation (RPE) [16]. We use 
SIFT and RANSAC implementation provided by OpenCV [39] as the indirect feature-
based method. In particular, we use a recent RPE method EssNet as a baseline for com-
parison. Following the same convention of prior work [9–12, 16, 17, 20, 23], we compute 
the median absolute position error in meters and the median absolute rotation error in 
degrees for all scenes and methods. Table 2 shows that our approach consistently out-
performs all IR and APE methods, as well as EssNet. In particular, it surpasses all pure 
learning-based approaches. For MapNet [12], our approach performs better overall, 
except for a slightly larger error in orientation. For visibility reasons, we show the results 
of several classic methods in Fig. 8.

Table 1  Dataset statistics and percentage of building category pixels

The building category occupies most part of the scene images

Kings’ College Old Hospital Shop Facade St M. Church

#Training images 1220 895 231 1487

#Test images 343 182 103 530

Spatial extent 140× 40m 50× 40m 35× 25m 80× 60m

%Building pixels 56.30% 73.70% 74.90% 66.60%
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Compared to EssNet, our approach improves the position accuracy consistently in all 
scenes, achieving a position error reduction of 12.5% and an orientation error reduc-
tion of 16.7% on average. In particular, for the Shop Facade scene, the position error 
is reduced by as much as 35.8%, and for the Old Hospital scene, the orientation error 
is reduced by 25.9%. Furthermore, we take the 100 images in each scene that have the 
largest pixel ratio of obstacles and moving objects. Then we report the median error 
in these image sets. From Fig.  9, we can see that the error increases because of the 
increased challenge, but our method remains superior to the baseline.

4.2 � Ablation study

By integrating our modules progressively, we show the impact of the individual modules of 
our pipeline. Table 3 shows the results of the baseline, BiasNet, AttNet, and our approach. 
For ease of observation, we show results in Fig. 10. As can be seen, each module positively 
affects the pipeline, but there is some fluctuation with scenes. The pipeline has the best 
performance with both BiasNet and AttNet, showing stable improvements in all scenes.

Furthermore, we compare our approach to the Prior Mask method described in Sect. 2.1; 
the results are shown in Table 3. Looking at Tables 1 and 3, we see that with Prior Mask, 
some image contents are unhelpful or harmful to localization performance. Overall, Prior 
Mask performs slightly better than the baseline. That is, the building category provides suf-
ficient support for localization. However, there is no accuracy improvement when integrat-
ing the attention module into the pipeline with Prior Mask. Rather than using a fixed mask, 
BiasNet adaptively fuses semantic information and obtains better accuracy. The bias feature 
maps B3

i  produced by BiasNet are shown in Fig. 2d. Different from the Prior Mask method, 
BiasNet learns to return different bias values for different categories, that is, filter image con-
tents with bias values. The semantic fusion provided by BiasNet is at the category level, as 
with the bias feature map. From the results, we find that the 19 categories are approximately 
divided into two types: reliable, often unchanging, categories such as buildings and roads, 
and unreliable, often changing, categories, such as persons, the sky, and vegetation. BiasNet 
gives each category a different bias value that agrees with humans’ common knowledge.

Table 2  Results on the Cambridge Landmarks dataset

We compare our approach against 3D structure-based method (3D), image retrieval (IR), indirect feature-based localization 
(IFB), absolute and relative pose estimation (APE and RPE) methods. We report the median position error in meters and 
orientation error in degrees. The best results are highlighted in bold except for methods marked with a *

Kings’ College Old Hospital Shop Facade St M. Church Average

3D *Active Search [17] 0.48m, 0.67◦ 0.81m, 1.15◦ 0.17m, 0.65◦ 0.36m, 1.00◦ 0.46m, 0.87◦

IFB *SIFT + RANSAC 0.49m, 0.70◦ 1.04m, 1.29◦ 0.19m, 0.67◦ 0.36m, 1.03◦ 0.52m, 0.92◦

IR DenseVLAD (D.VLAD) [20] 2.80m, 5.72◦ 4.01m, 7.13◦ 1.11m, 7.61◦ 2.31m, 8.00◦ 2.56m, 7.12◦

D.VLAD + Inter. [23] 1.48m, 4.45◦ 2.68m, 4.63◦ 0.90m, 4.32◦ 1.62m, 6.06◦ 1.67m, 4.87◦

APE PoseNet (PN) [9] 1.92m, 5.40◦ 2.31m, 5.38◦ 1.46m, 8.08◦ 2.65m, 8.48◦ 2.09m, 6.84◦

Bay. PN [10] 1.74m, 4.06◦ 2.57m, 5.14◦ 1.25m, 7.54◦ 2.11m, 8.38◦ 1.92m, 6.28◦

LSTM PN [11] 0.99m, 3.65◦ 1.51m, 4.29◦ 1.18m, 7.44◦ 1.52m, 6.68◦ 1.30m, 5.52◦

MapNet [12] 1.07m, 1.89◦ 1.94m, 3.91◦ 1.49m, 4.22◦ 2.00m, 4.53◦ 1.63m, 3.64◦

RPE EssNet [16] 0.82m, 2.32◦ 1.58m, 4.37◦ 1.29m, 6.32◦ 1.74m, 6.17◦ 1.36m, 4.80◦

BiasAttNet (ours) 0.75m, 2.26◦ 1.44m, 3.23◦ 0.95m, 5.24◦ 1.62m, 5.27◦ 1.19m, 4.00◦
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We also evaluated the performance of the dilation strategy. Due to imperfect accuracy, 
the segmentation method cannot distinguish precisely the connecting regions between 
the critical categories and others. This will cause slight damage to the boundaries of crit-
ical categories which are useful for localization. The 7 × 7 kernel allows the boundaries 
of the critical categories to grow 3 pixels outward, so the details of the critical categories 
can be completely retained. Comparing the overall localization errors of BiasNet and 
BiasNet without dilation, as Table 3 shows, we see that the dilation strategy can reduce 
localization error.

To validate the benefit of semantic information to localization, we replace I ′
i in 

Sect. 2.1 with B3
i  , that is, using semantic maps as the only input. As Table 3 shows that 

semantics is effective in improving accuracy. Furthermore, we remove the hypothesis fil-
tering step in our pipeline and use {Ir1, Ir2} as the only hypothesis and use it as pose 
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Fig. 8  Position and orientation errors of the various methods on the Cambridge Landmarks dataset. (K.C. 
stands for King’s College, O.H. for Old Hospital, S.F. for Shop Facade, S.M.C. for St Mary’s Church, and Ave. for 
Average.)
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estimation. The results show the hypothesis filtering makes our approach robust to 
outliers.

We are also interested in the effect of semantics in feature-based approaches. To this 
end, we use SIFT and RANSAC to implement the indirect feature-based method and 
use 448× 448 pixels center cropped images as our pipeline. We filter matches between 
different categories in the feature match step as [40]. It almost produces no gain from 
semantics for feature-based methods, as shown in Table 3.

4.3 � Effectiveness of semantic masking and attention

In this subsection, we will show and explain how do our proposed modules work.
How does semantic masking work? The semantic mask is at pixel level and contains 

different categories of objects. By integrating the semantics map, the extracted features 
contain this valuable category information. As analyzed in Sect. 4.2, our approach filters 
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Fig. 10  Position and orientation errors of the baseline and the proposed pipeline. We demonstrate the 
proposed modules are effective by progressively integrating the modules. (K.C. stands for King’s College, O.H. 
for Old Hospital, S.F. for Shop Facade, S.M.C. for St Mary’s Church, and Ave. for Average.)

Table 3  Results of ablation study

We compare the pipeline that has individual modules removed or replaced. The best results are highlighted in bold except 
for methods marked with a *

Kings’ College Old Hospital Shop Facade St M. Church Average

EssNet 0.82m, 2.32◦ 1.58m, 4.37◦ 1.29m, 6.32◦ 1.74m, 6.17◦ 1.36m, 4.80◦

BiasNet 0.79m, 2.77◦ 1.46m, 4.26◦ 1.27m, 6.63◦ 1.51m, 6.79◦ 1.26m, 4.99◦

BiasNet (without dilation) 0.82m, 2.80◦ 1.40m, 4.00◦ 1.48m, 9.30◦ 1.52m, 6.27◦ 1.31m, 5.59◦

AttNet 0.84m, 2.28◦ 1.60m, 4.41◦ 1.19m, 4.96◦ 1.57m, 5.56◦ 1.30m, 4.30◦

BiasNet + AttNet 0.75m, 2.26◦ 1.44m, 3.23◦ 0.95m, 5.24◦ 1.62m, 5.27◦ 1.19m, 4.00◦

BiasAttNet (without RANSAC) 0.82m, 2.11◦ 1.60m, 3.96◦ 1.00m, 5.39◦ 1.71m, 5.77◦ 1.28m, 4.31◦

Prior Mask + ResNet 0.72m, 2.22◦ 1.68m, 3.62◦ 1.17m, 6.57◦ 1.78m, 6.29◦ 1.34m, 4.68◦

Prior Mask + AttNet 0.84m, 2.25◦ 1.63m, 3.78◦ 1.30m, 6.84◦ 1.55m, 5.38◦ 1.33m, 4.56◦

Semantics only 1.43m, 3.30◦ 4.32m, 9.87◦ 3.23m, 16.01◦ 4.53m, 21.04◦ 3.38m, 12.56◦

SIFT + RANSAC (448 × 448) 0.63m, 0.79◦ 1.75m, 1.81◦ 0.35m, 1.47◦ 0.50m, 1.47◦ 0.81m, 1.38◦

SIFT + RANSAC + Semantics 0.59m, 0.81◦ 1.58m, 2.10◦ 0.32m, 1.50◦ 0.54m, 1.56◦ 0.76m, 1.49◦
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some categories and retains others. In the correlation step later on, the same semantic 
categories produce enhanced responses, and the different categories produce suppressed 
responses.

How does attention work? We select one image in Shop Facade as an example and 
visualize the feature maps with torchvision [38], as depicted in Fig.  7. Compar-
ing the feature maps F0

i  and F1
i  , we see that the brightness of each channel fea-

ture maps drops to varying degrees, that is, some channels are suppressed in the 
feature map. The visualization of the channel attention feature map Nc(F

0
i ) shows 

a lowered degree of each channel. From the visualization of spatial attention fea-
ture maps Ns(F

1
i ) , we find that the spatial feature map is similar in structure to the 

input image, and some information is filtered out in the spatial dimension. In RPE 
localization, the task of the attention network is to retain distinctive features of the 
image which make it easy to match other features when comparing images. Because 
the attention module suppresses meaningless feature maps along the channel and 
spatial dimensions, AttNet can play an essential role in our approach.

4.4 � Computational complexity

Table  4 shows the parameters and GFLOPs of our modules. As can be seen, the 
overall overhead of BiasNet is quite small in terms of both parameters and com-
putation. We report the computation time of test images in Table 5. Our approach 
takes 67 ms per image pair on an NVIDIA 2080Ti GPU. That makes the localization 
of a query image, which involves five image pairs, take 334 ms (3 FPS). In compari-
son, the indirect feature-based localization (SIFT + RANSAC) method takes 1131 
ms for a query image on an Intel Core i7-9700 CPU.

5 � Conclusion
In this paper, we have proposed a novel relative pose estimation pipeline. We show that 
different regions in the image play different roles, some positive and others negative, in 
the localization task. Our approach can filter out interference information brought by 

Table 4  Parameters sizes and GFLOPs of the proposed network

Description BiasNet AttNet Regression layers BiasAttNet

Parameters size 2.60K 21.29M 3.18M 21.61M

GFLOPs 0.52 14.68 0.03 30.45

Table 5  Execution time of our localization approach

Kings’ College Old Hospital Shop Facade St M. Church Mean 
execution 
time

# image pairs 1715 910 515 2650

BiasAttNet Total time 102.81 s 67.17 s 33.92 s 182.49 s 67 ms

Time per pair 60 ms 73 ms 65 ms 68 ms

SIFT + RANSAC Total time 352.29 s 310.38 s 109.36 s 537.13 s 226 ms

Time per pair 205 ms 341 ms 212 ms 202 ms
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the changing objects in the image, at both pixel and feature levels. We design a network 
module that incorporates semantic information by segmentation, and show its benefit to 
localization. We also propose an attention feature extraction network that refines reli-
able information and extracts more distinctive features. We use hypothesis filtering to 
make our approach robust to outliers, and verify its effect with ablation experiments. 
The results show our pipeline outperforms all learning-based methods.
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