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1  Introduction
Over the past decades, the problem of sparse signal recovery, now termed as the com-
pressed sensing (CS) [1–3], has been greatly developed and widely used in many fields 
such as the pattern recognition [4], image processing [5–7], medical image [8] and also 
the camera design [9], to name a few. Simply speaking, we say a signal x̂ ∈ R

n is sparse 
if and only if it has fewer nonzero components than its length, and if there are at most 
k(≪ n) nonzero entries in x̂  , x̂  is said to be a k-sparse signal. In fact, one of the key 
goals of CS is the recovery of such a k-sparse signal x̂  from its as few as observations 
b = Ax̂  , where A ∈ R

m×n(m < n) is a pre-designed measurement matrix and b ∈ R
m is 

the resultant observed signal. To realize this goal, it is often suggested to solve the fol-
lowing ℓ1 method [10, 11]

Since model (1.1) is convex, it can be efficiently solved by lots of convex optimization 
algorithms [12, 13], and many recovery guarantees, including the recovery conditions as 

(1.1)min
x∈Rn

�x�1 =

n

i=1

|xi| s.t. Ax = b.
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well as their resultant recovery error estimates, have also been obtained for (1.1) before, 
see, e.g., [14–16].

Unfortunately, the ℓ1 method do not incorporate any side information of x̂  due to the 
equal treatment of the ℓ1 norm for the components of the variable x . Considering that 
such side information is often available in many real-world applications, it is naturally 
expected that the performance of model (1.1) can be further improved if the side infor-
mation is well integrated. In general, there are two types of common side information in 
CS filed. The first one takes the form of a known support estimate. To deal with this type 
of side information, the authors in [17] first modeled the known support as a set T, and 
then integrated it into the ℓ1 norm, leading to the model

where Kc models the complement set of K in {1, 2, 3, . . . , n} . Their work also showed 
that the resultant recovery conditions are weaker than those without side information. 
In [18], the authors considered a more general weight rather than a constant weight in 
the known support estimate. In [19], a variant iterative hard thresholding (IHT) algo-
rithm was proposed by incorporating the partially known support information, and 
some theoretical analysis was also established for this algorithm. In [20], the orthogo-
nal matching pursuit (OMP), as an iterative greedy algorithm, was extended by using 
the partially known support. The authors of [21] also considered embedding the known 
support information into the iterative reweighted least squares (IRLS) algorithm at each 
iteration, leading a reduction of the number of the measurements as well as the compu-
tational cost. Recently, some new recovery conditions were obtained by Ge et al. in [22].

Another type of the side information takes the form of a referenced similar to the orig-
inal signal x̂  . The side information of this type usually comes from applications such 
as the magnetic resonance imaging (MRI) [23], video processing [24, 25] and estimate 
problems [26]. For example, when faced with some video processing problems, we usu-
ally know some previous video frames before we cope with the next video frames. These 
video frames known in advance, to some degree, can be viewed as the side information 
of the next video frames. By introducing two ℓ1 norm and ℓ2 norm approximation terms 
to model (1.1), respectively, Mota et al. [27] proposed to solve an ℓ1–ℓ1 method

and the ℓ1–ℓ2 method

where β is a positive parameter and w ∈ R
n is the referenced signal that models 

the side information. For simple, w is assumed to obey Supp(w) ⊂ Supp(̂x) , where 
Supp(w) = {i : |wi| �= 0, i = 1, 2, · · · , n} . Based on some statistical tools, the authors 
affirmatively answer how many measurements one required to ensure the exact recovery 
of any k-sparse signal x̂  . Some convincing experiments are also conducted to support 
their claims. Note that there also exist some works which embeds the prior information 

(1.2)min
x∈Rn

�xKc�1 �
∑

i∈Kc

|xi| s.t. Ax = b,

(1.3)x♯ = arg min
x∈Rn

�x�1 + β�x − w�1 s.t. Ax = b

(1.4)x⋄ = arg min
x∈Rn

�x�1 +
β

2
�x − w�22 s.t. Ax = b,
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of the desired signals into some other models. For example, Zhang et al. [28] recently 
proposed to use an ℓ1−2 model to deal with the signal recovery with prior information. 
We refer the interested readers to [28–30] and the references within for more details.

In this paper, we revisit the above ℓ1–ℓ1 and ℓ1–ℓ2 methods for exact sparse recov-
ery with side information. Different from the pioneering work of [27], this paper 
aims at investigating both the ℓ1–ℓ1 and ℓ1–ℓ2 methods in a deterministic way. To 
do so, by means of the powerful null space property (NSP), we established two kind 
of deterministic sufficient and necessary condition for these two methods. Our 
obtained theoretical results not only well complement the previous work [27] that 
was based on the statistical analysis, but also surprisingly find that the sharp exact 
recovery conditions of model (1.1) are still suitable for the ℓ1–ℓ1 model (1.3). Moreo-
ver, the resultant numerical experiments show that the recovery performance of the 
ℓ1–ℓ1 method is superior to other methods in terms of the number of the measure-
ments required by incorporating the side information.

The rest of this paper is organized as follows the main theoretical results are pre-
sented in Sect. 2, and the resultant numerical experiments are provided in Sect. 3. 
Finally, we conclude this paper in Sect. 4.

2 � The deterministic analysis of ℓ1–ℓ1 and ℓ1–ℓ2 methods
Our main results will be presented in this section, which include the exact recovery 
guarantees of ℓ1–ℓ1 and ℓ1–ℓ2 methods. Before moving on, we first introduce the fol-
lowing two key definitions.

Definition 2.1  (NSP, see, e.g., [31]) For any subsets K ⊂ {1, 2, . . . n} with |K | ≤ k and 
any h ∈ Ker(A)\{0} � {h : Ah = 0,h �= 0} , we say A ∈ R

m×n satisfies the k-order NSP if 
it holds that

Furthermore, if it holds that

for certain 0 < α < 1 , then we say A satisfies the k-order stable NSP with constant α.

Definition 2.2  (Restricted isometry property, see, e.g., [3]) A matrix A is said to satisfy 
the k-order restricted isometry property (RIP) if there exists 0 < δ < 1 such that

holds for all k-sparse signals h ∈ R
n and subsets K ⊂ {1, 2, . . . n} with |K | ≤ k . Moreover, 

the smallest δ obeying (2.7) is denoted by δk , i.e., the known k-order restricted isometry 
constant (RIC).

Theorem  2.3  The ℓ1–ℓ1 model (1.3) with Supp(w) ⊂ Supp(x̂) has a unique k-sparse 
solution if and only if A obeys the k-order NSP.

(2.5)‖hK‖1 < ‖hKc‖1.

(2.6)�hK�1 ≤ α�hKc�1

(2.7)(1− δ)�hK�
2
2 ≤ �AhK�2 ≤ (1+ δ)�hK�

2
2,
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1 � Remark 2.4
The k-order NSP has been demonstrated to be a necessary and sufficient condition for the 
classical ℓ1 method to ensure the exactly k-sparse signal recovery. However, according to 
our Theorem 2.3, this condition also applies to the ℓ1–ℓ1 model (1.3). On the other hand, 
it has also been shown in [32, 33] that if A obeys the k-order stable NSP with constant α , 
then α can be expressed by tk-order RIC δtk with t > 1 as follows:

If one further restricts α < 1 , then we will get

Note that condition (2.8) has been proved to sharp for the classical ℓ1 to exactly recover 
any k-sparse signal. Again, condition (2.8) is also suitable to the ℓ1–ℓ1 model (1.3). As far 
as we know, the RIC-based sufficient conditions have not been established for the ℓ1–ℓ1 
method before.

1 � Proof of Theorem 2.3
First, we prove the sufficiency. Pick any feasible k-sparse vectors x̂  . Let K = Supp(̂x) . Since 
h ∈ Ker(A) , it holds that A(̂x + h) = Ax̂ = b . And

where we have used the triangle inequality in the first inequality.

Recall that ‖hK‖1 < ‖hKc‖1 , β > 0 , and we have assumed that A obeys the k-order 
NSP, we get �̂x + h�1 + β�̂x + h− w�1 > �̂x�1 + β�̂x − w�1 . Hence, the sufficiency is 
proved.

Now, we prove the necessity. To do so, we first assume that the ith component of x̂  obeys 
x̂i = −sign(�h�∞) for all i ∈ K  . Then, we can obtain the following properties �̂x�0 ≤ k , 
�̂xK + τhK�1 = �̂xK�1 − �τhK�1 holds for all 0 < τ ≤ 1 . Now, By replacing h in (2.9) 
with τh , and noting that �̂x + τh�1 + β�̂x + τh− w�1 > �̂x�1 + β�̂x − w�1 since x̂  is 
the exact solution, we can easily deduce that

for any 0 < τ ≤ 1 and β > 0 , which requires (2.5) to hold. �

In what follows, we establish the stable NSP condition of order s for the ℓ1–ℓ2 model 
(1.4).

α =
δtk

√

(

1− (δtk)
2
)

(t − 1)
.

(2.8)δtk <

√

t − 1

t
.

(2.9)

�̂x + h�1+β�̂x − w + h�1 = �̂xK + hK�1 + β�̂xK + hK − w�1 + �hKc�1 + β�hKc�1

≥�̂xK�1 − �hK�1 + β�̂xK − w�1 − β�hK�1 + �hKc�1 + β�hKc�1

=�̂xK�1 + β�̂xK − w�1 + (1+ β)(�hKc�1 − �hK�1),

(1+ β)(�τhKc�1 − �τhK�1) > 0
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Theorem 2.5  Assume that w is a side information with Supp(w) ⊂ Supp(x̂) . The ℓ1–ℓ2 
model (1.4) has a unique k-sparse solution x̂( = 0) if and only if A obeys k-order stable 
NSP with α being

1 � Remark 2.6
Compared with the previous NSP condition for the ℓ1–ℓ1 model (1.3), the obtained stable 
NSP for ℓ1–ℓ2 model (1.4) performs a bit loose. Besides, it is also affected by the infinite 
norm of the desired k-sparse signal x̂  and the referenced signal w . From this point of view, 
the ℓ1–ℓ2 model is less effective than the ℓ1–ℓ1 model in theoretical aspect.

1 � Proof of Theorem 2.5
Our proof is partially inspired by [34]. We start with proving the sufficiency. Pick 
any feasible k-sparse vectors x̂  . Let K = Supp(̂x) . Since h ∈ Ker(A) , we first have 
A(̂x + h) = Ax̂ = b , and

where we have used �hK�22 + �hKc�22 = �h�22 and �̂xK − w,hK � ≥ −(�̂x�∞ + �w�∞)�hK�1 
in the second inequality. Since ‖h‖22 > 0 and [1+ β

(

�̂x�∞ + �w�∞
)

]�hK�1 < �hKc�1 , 
we get �̂x + h�1 +

β
2 �̂x + h− w�22 > �̂x�1 +

β
2 �̂x − w�22 . Hence, we prove that x̂  is the 

unique minimizer of (1.4).

As for the necessity, it is sufficient to show that for any given nonzero h ∈ Ker(A) and 
K with |K | ≤ k the stable NSP of order k with α given by (2.10) holds. Similarly with 
Theorem  2.3, we can obtain �̂x�0 ≤ k , �̂xK + τhK�1 = �̂xK�1 − �τhK�1 . Furthermore, 
assume that the scales x̂  and w have fixed values of �̂x�∞ and −�w�∞ , respectively, then 
we get �̂xK − w, τhK � = −(�̂x�∞ + �w�∞)�hK�1 for any 0 < τ ≤ 1 . Now, we replace τh 
with h and observe that both of inequalities of (2.11) now hold with equality. Since x̂  is 
the exact recovery, it requires �̂x + τh�1 +

β
2 �̂x + τh− w�22 > �̂x�1 +

β
2 �̂x − w�22 , so we 

get

for any 0 < 1 ≤ τ , which proves the necessity. �

(2.10)α =
1

1+ β
(

�̂x�∞ + �w�∞
)

(2.11)

�̂x + h�1 +
β

2
�̂x + h− w�22 = �̂xK + hK�1 +

β

2
�̂xK + hK − w�22 + �hKc�1 +

β

2
�hKc�22

≥ �̂xK�1 − �hK�1 +
β

2
�̂xK − w�22 +

β

2
�hK�

2
2 + β �̂xK − w,hK � + �hKc�1 +

β

2
�hKc�22

≥ �̂xK�1 +
β

2
�̂xK − w�22 + �hKc�1 − �hK�1 + β �̂xK − w,hK � +

β

2
�h�22

≥ �̂xK�1 +
β

2
�̂xK − w�22 + �hKc�1 − �hK�1 − β(�̂x�∞ + �w�∞)�hK�1 +

β

2
�h�22

�τhKc�1 − �τhK�1 − β(�̂x�∞ + �w�∞)�τhK�1 +
β

2
�τh�22 > 0
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3 � Numerical simulations
As can be seen in the previous sections, our goal in this paper is to provide some deter-
ministic recovery conditions for the ℓ1–ℓ1 model and the ℓ1–ℓ2 model to guarantee the 
exact sparse recovery, and the obtained theoretical results for these models can be found 
in Theorem  2.3 and Theorem 2.5, respectively. On the other hand, it is still a difficult 
problem to find the desired measurement matrices according to the conditions stated in 
two obtained theorems. Nevertheless, we still hope to provide some numerical simula-
tions to testify the efficiency of two models with the side information. Since both the 
ℓ1–ℓ1 model, ℓ1–ℓ2 model and the ℓ1 model are convex, in this paper, we resort to the 
popular and easy-implemented CVX1 (with an SeDuMi solver) to solve them.

3.1 � Experiments on the synthetic signals

We start with the experiments on synthetic signals. For simplicity, in all experiments, 
we assume that the length of the desired signal x̂  is n = 256 , and its sparsity is set to 
be k. We generate such a k-sparse signal x̂  as follows. The location of the nonzero com-
ponents in x̂  is generated at random and their corresponding values are chosen from a 
standard normal distribution. We assume that the referenced signal w is kw-sparse with 
kw ≤ k , and its nonzero entries are chosen at random from nonzero entries in x̂  with 
Supp(w) ⊆ Supp(̂x) . Obviously, when kw < k , w contains part of the side information of 
x̂  , and when kw = k , w contains all the information of x̂  , i.e., w = x̂  . Besides, we gener-
ate the measurement matrix A ∈ R

m×n by drawing it from a standard Gaussian distri-
bution. To judge the recovery performance of the completing methods, we adopt the 
signal-to-noise (SNR), see, e.g., [35], given by

where x̂  and x̃ are denoted by the original signal and the recovered signal by certain 
model. If there is no specific description, the average SNR results over independent 50 
trails are used as the final results.

We first conduct a simple experiment for the ℓ1–ℓ1 model and the ℓ1–ℓ1 model to test 
their recovery performance on the signal with side information. In this sort of experi-
ments, we set m = 70 , k = 20 , kw = 10 , and β = 104 for the ℓ1–ℓ1 model and β = 10−4 
for the ℓ1–ℓ2 model.

Figure 1 plots the resultant recovery performance. One can easily observe that both 
the ℓ1–ℓ1 model and the ℓ1–ℓ2 model well finish the recovery task with the two recovered 
signals being almost same with the original signal. In the above experiments, we only 
set β = 104 for the ℓ1–ℓ1 model and β = 10−4 for the ℓ1–ℓ2 model for simplicity. Obvi-
ously, if these parameters can be further optimized, the resultant SNR performance will 
be correspondingly improved. To select the proper β for the models (1.3) and (1.4). We 
let the parameter β be chosen from {10−8, 10−7, · · · , 108} , and set the other parameters 
be same as before.

SNR(̂x, x̃) = 20 log10
�̂x�2

�̂x − x̃�2
,

1  http://​cvxr.​com/​cvx/.

http://cvxr.com/cvx/
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Figure 2 plots the obtained results. According to Fig. 2, in what follows we set β = 105 
for the model (1.3) and β = 10−6 for the model (1.4).

Furthermore, by fixing k = 20 , kw = 10 , we testify the recovery performance of the 
two models under different number of measurements. In this sort of experiments, we 
also consider comparing these two models with the classical ℓ1 model (1.1) and the 
weighted ℓ1 model (without noise) in [36], i.e.,

where

(3.12)min
x∈Rn

n
∑

i=1

wi|xi| s.t. Ax = b,

wi =

{

ω ∈ [0, 1], i ∈ K
1, i ∈ Kc ,

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

eulaV

50 100 150 200 250
Location

Fig. 1  Recovery performance of the models (1.3) and (1.4) on a given sparse signal with side information
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Fig. 2  Selection of the best β ’s for both the ℓ1–ℓ1 model and the ℓ1–ℓ2 model
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and K ⊆ {1, 2, 3, · · · , n} models the known support set of the original signal x . For sim-
plicity, we set K = Supp(w) . Since (3.12) is also convex we can solve it easily by means 
of the CVX. Obviously, the above weighted ℓ1 model will reduce to (1.2) when one 
sets ω = 0 . According to [36], it is suggested to set ω as closer as 0 when the value of 
|K ∩ Supp(̂x)|/|K | is as closer as 1. Considering that in our experiments K is strictly 
included in Supp(̂x) , we set ω = 0 for the weighted ℓ1 model to boost its best recovery 
performance. Figure 3 shows the obtained results.

It first shows that an increasing m leads to a better recovery for all three models. How-
ever, among these models, the ℓ1–ℓ1 model performs best, followed by the weighted ℓ1 
model. The ℓ1–ℓ2 model and the classical ℓ1 model perform worst. It first indicates that a 
good selection of the constraint on the error of the true signal and its referenced signal 
plays a key role in enhancing the recovery performance of the models. It also shows that 
the ℓ1–ℓ1 model is better than the weighted ℓ1 model in taking good advantage of the 
side information. When it comes to the (classical) ℓ1 model itself, it is suggested to add 
an ℓ1-norm based error, rather than an ℓ2-norm based error, into the objective function 
of the ℓ1 model to boost its recovery performance when the side information of the sig-
nals becomes available. This observation is also consistent with the conclusion drawn in 
[21].

Moreover, to further testify the performance of the ℓ1–ℓ1 model and the ℓ1–ℓ2 model 
affected by the sparsity of the signals with side information, we consider using these two 
models to recover the k-sparse signals under different kinds of kw-sparse referenced sig-
nals. Figure  4 first plots the recovery results with k changing from {10, 12, 14, · · · , 28} 
where kw is set to be kw = ⌈k/2⌉.

In general, if the number of the measurements is fixed, a larger k always leads to a 
poorer recovery. Obviously, this conclusion can be easily drawn from Fig. 4. However, 
once the side information of the desired signals is available and is also well modeled 
the recovery performance can be further improved. Since the classical ℓ1 model do not 
take the side information into consideration, its performance is weaker than the ℓ1–ℓ1 
model and the weighted ℓ1 model. In this experiment, the ℓ1–ℓ2 model performs poor 
again. Moreover, it reconfirms again a fact that if one can take good advantage of the 

40 50 60 70 80 90
Number of the measurements (m)

0

50

100

150

200

250

)
Bd(

R
NS

Fig. 3  Recovery performance of four models under different number of the measurements
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side information and also well model the side information, the recovery performance 
can be further improved. In Fig. 5, we investigate the recovery performance affected by 
the “quality/quantity” of the side information. To be specific, we fix the sparsity of the 
original signals as k = 20 , and then let kw change from {1, 3, 5, 7, · · · , 17} . Obviously, 
the larger the value of kw , the higher “quality/quantity” the side information. It is also 
expected that the recovery performance will be largely improved once the value of kw is 
increasing.

Obviously, it is easy to see from Fig. 5 that both the recovery performance of the ℓ1–ℓ2 
model and the weighted ℓ1 model is consistent with our expectations, which is far better 
than the rest two models. Note that in this sort of experiments, we also fix m = 64.

At the end of this part, we will conduct a special experiment, in which the referenced 
signal w is set as w = x̂  . Under such setting it becomes very important to investigate 
how the parameter β affects the recovery performance of both the ℓ1–ℓ1 model and the 
the ℓ1–ℓ2 model. To conduct this experiment, we set m = 64 , k = kw = 20 , and let the 
parameter β change from {10−8, 10−7, · · · , 108} . Figure 6 plots the obtained results.

Fig. 4  Recovery performance of four models under different sparsity of the desired signals

2 4 6 8 10 12 14 16
Number of the known entries
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50

100

150

200

250

)
Bd(

R
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Fig. 5  Recovery performance of four models under different “quality/quantity” of side information
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Obviously, a larger β , a better recovery performance of both these two models. When 
β is relatively small, both the models perform similar. However, when β increases, the ℓ1
–ℓ1 model performs much better than the ℓ1–ℓ2 model. It should also be noted that such 
a assumption that w = x̂  is usually impractical in real-world applications. However, we 
can rough conclude that a relative bigger β helps the ℓ1–ℓ1 model to yield a better recov-
ery performance.

3.2 � Experiments on the real‑world images

In this part, we consider applying the above-mentioned four models to deal with the 
real-world image recovery problem.

Figure 7 shows ten real-world images that we will use in the following experiments. 
As is known to all, the real-world images are generally not nearly sparse themselves, but 
can be transformed to be nearly sparse by using some sparse dictionaries such as the 
discrete cosine transform (DCT). On the other hand, almost all the real-world images 
usually have local smoothness, which indicates that one can use some known informa-
tion of the original image to help recover some unknown neighboring information of the 
original image. Therefore, we will take the nearly sparse vectors (generated by applying 
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Fig. 6  Recovery performance of the ℓ1–ℓ1 model and the ℓ1–ℓ2 model under different β’s

Fig. 7  The 128× 128 test images. They are numbered in order from 1 to 10, from left to right, and from top 
to bottom
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the DCT to each column of the input images) as the test signals to test the recovery 
performance of these models. To be specific, let the original image G be denoted by 
G = [g1, g2, · · · , gd] with g i ∈ R

n for i = 1, 2, · · · , d , and the DCT dictionary be denoted 
by D ∈ R

n×n , then we can easily get the desired sparse (test) signal xi by xi = Dg i . To 
model the side information of xi , we first generate ri = xi + 0.01 ∗ �xi�2 ∗ ξ , where 
ξ ∈ R

n and its elements are generated independently from the standard norm distri-
bution. The signal ri can be viewed as the perturbed version of the signal xi . As to the 
support estimate K in the weighted ℓ1 model, we set K to be the indices of the ⌈n ∗ 1%⌉ 
largest absolute elements in ri . As to the ℓ1–ℓ1 model and the ℓ1–ℓ2 model, we set the the 
referenced signal of xi by wi with (wi)j = (ri)j when j ∈ K  and 0 otherwise. As before, we 
generate the measurement matrix A ∈ R

m×n with m = ⌈n/4⌉ whose elements are gener-
ated independently from the standard norm distribution. As to the other parameters, we 
set them as we have claimed in Sect. 3.1. Obviously, once we obtain the recovered signal 
one by one, denoted by x♯i  the ith recovered signal for i = 1, 2, · · · , d , by any of the four 
models, we can thus obtain the recovered image G♯ by using

To eliminate the column effect on each recovered image, we consider recovering the 
original images by column and by row, respectively, and then use their average values as 
the final output. Moreover, to evaluate the quality of the recovered images, we consider 
using two popular indices, i.e., the peak signal-to-noise ratio (PSNR) and the structural 
similarity (SSIM), more details on these two indices can be found in [37]. Table 1 lists 
the obtained PSNR|SSIM results of ten test images recovered by three different models, 
where the highest PSNR and SSIM values are marked in bold.2

It is easy to see that the ℓ1–ℓ1 model performs best among all the models, followed by 
the weighted ℓ1 model. The ℓ1 model and the ℓ1–ℓ2 model perform almost be same, but 
are all far worse than the ℓ1–ℓ1 model. There results further confirm the claims we have 
drawn previously. Note that, in this sort of experiments, we still set β = 105 for the ℓ1–ℓ1 

G♯ = D−1[x
♯
1, x

♯
2, · · · , x

♯

d].

Table 1  PSNR|SSIM performance of ten images by four different models

ℓ1 model Weighted ℓ1 model ℓ1–ℓ1 model

1 20.58|0.387 25.43|0.612 26.20|0.642
2 19.04|0.379 22.02|0.512 23.10|0.573
3 18.05|0.347 21.72|0.501 22.73|0.565
4 20.83|0.426 23.85|0.562 24.74|0.622
5 19.84|0.412 23.46|0.572 24.57|0.638
6 18.71|0.383 22.25|0.552 23.51|0.627
7 18.33|0.354 21.30|0.476 22.24|0.527
8 19.74|0.353 22.98|0.486 24.08|0.548
9 18.82|0.419 21.63|0.566 22.70|0.634
10 20.88|0.437 23.84|0.589 25.00|0.656

2  Here we omit the PSNR|SSIM results obtained by the ℓ1–ℓ2 model since they are almost be same with the ones 
obtained by the ℓ1 model.
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model and β = 10−6 for the ℓ1–ℓ2 model. It is believed that if β can be further optimized, 
the final performance of these two models can be further improved.

4 � Conclusion and future work
In this paper, we establish two NSP-based sufficient and necessary conditions for two ℓ1–
ℓ1 and ℓ1–ℓ2 methods in the case that the side information of the desired signal becomes 
available. These deterministic theoretical results provide good complement for the pre-
vious work on these two methods that are based on the statistical analysis. Besides, some 
experiments demonstrate ℓ1–ℓ1 method with side information is better than the ℓ1–ℓ2 
method, weighted ℓ1 method and the traditional ℓ1 method in terms of exact sparse sig-
nal recovery when some side information of the desired signals become available.

Note that there also exist a large number of other methods that have been used to deal 
with the sparse recovery with the prior information of the signals, such as the weighted 
ℓp method [29] and the weighted ℓ1−2 [28, 30]. Unfortunately, when compared with the 
above methods, the ℓ1–ℓ1 method seems to under-perform. To overcome this bad situ-
ation, we suggest replacing the ℓ1 norm used in the ℓ1–ℓ1 method with ℓp quasi-norm 
with 0 < p < 1 or the ℓ1−2 metric, which directly leads to the following two models

and

On the other hand, considering that the unknown noise widely exist in many real-world 
applications, it is very necessary to extend the models (1.3) and (1.4) to more general 
cases. Inspired by the recent work [33], it is suggested to consider investigating a regu-
larization version of (1.3), i.e.,

where θ > 0 is another trade-off parameter. All the above considerations will be our 
future work.
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min
x∈Rn

�x�p + β�x − w�1 s.t. Ax = b,

min
x∈Rn

�x�1 − �x�2 + β�x − w�1 s.t. Ax = b.

x♯ = arg min
x∈Rn

�x�1 + β�x − w�1 + θ�Ax − b�22,
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