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1  Introduction
Sampling plays a critical role in signal analysis and contact sensor shape detection. How-
ever, samples cannot be collected uniformly in various applications, such as underwater 
terrain subsidence monitoring based on a MEMS 9-axis sensor array [1–3], shape moni-
toring based on the fiber Bragg grating (FBG) sensor array [4–10], and data gloves or 
motion capture devices based on fiber curvature sensor arrays [11, 12]. The sensor array 
has an implicit characteristic—the arc length interval between the sensors is equal and 
constant when the sensor array moves with the detected object. Therefore, the sampling 
of the sensor array becomes nonuniform even though the sensor array is deployed in an 
equal arc interval at the beginning (uniform sampling at the beginning) when the sensor 
array moves with the detected object.

Whether the detected object can be completely reconstructed from its nonuni-
form spatial sampled values with the condition of equal arc interval is a general and 
important problem which should be studied. There are two reasons: One is that it 

Abstract 

Nonuniform sampling with equal arc length intervals can be found in shape measure-
ments with contact sensor arrays. In this study, the conditions of nonuniform spatial 
sampling with an equal arc length interval are derived from two frame theorems. First, 
for general nonuniform sampling, the condition is that the equal arc length interval 
of the sensors should be less than 1

4�
 . Second, for strictly increasing sampling (the 

sampling point set is strictly increasing), the condition is that the equal arc length 
interval of the sensors should be less than 1

2�
 . The � is the maximum frequency of the 

detected object. For the latter, if the sampling frequency is more than twice the sam-
pling frequency required, the reconstruction error (RRMSE and MRE) is less than 5%. 
If the sampling frequency is more than 2.5 times, the reconstruction error is less than 
3%. The simulation and the application test are carried out, and the results show that 
a sensor array with equal arc length interval can reconstruct the detected object with 
high accuracy.

Keywords:  Nonuniform spatial sampling, Equal arc length interval, Frame theorem, 
Reconstruction

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Xu et al. 
EURASIP Journal on Advances in Signal Processing         (2022) 2022:59  
https://doi.org/10.1186/s13634-022-00888-x

EURASIP Journal on Advances
in Signal Processing

*Correspondence:   
chunyingxu@stu.edu.cn

1 College of Engineering, 
Shantou University, 
Shantou 515013, China
2 Guangdong Provincial Key 
Laboratory of Digital Signal 
and Image Processing, Shantou, 
China
3 Key Laboratory of Intelligent 
Manufacturing Technology 
(Shantou University), Ministry 
of Education, Shantou, China
4 Ocean Collage, Zhejiang 
University, Zhoushan 316021, 
China
5 Charles Sturt University, Albury, 
Australia

http://orcid.org/0000-0002-6298-1129
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-022-00888-x&domain=pdf


Page 2 of 18Xu et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:59 

cannot be sure if the reconstructed signal is not distorted from the nonuniform sam-
pling set obtained from the contact sensor array. The other is that more sensors are 
often used to ensure the reconstruction without distortion, resulting in increased 
costs, more complex systems and larger data volumes if the nonuniform sampling 
conditions are not known.

Consequently, there have been studies on randomized nonuniform sampling [13–
18] and periodic nonuniform sampling [19–22]. For randomized nonuniform sam-
pling, the nonuniform samples are often regarded as random perturbations from a 
uniform sampling grid in the analysis [17]. The nonuniform sampling set has random 
characters. The sampling times are often constructed by adding a Gaussian distri-
bution sampling noise to the previous sampling time. Xu et  al. [17] considered the 
second-order random statistic characters; the randomized nonuniform sampling is 
equivalent to the uniform sampling of the signal after a pre-filter. The pre-filter is a 
fractional multiplicative filter. The reference [23] derived the sampling methods for 
random signals with known spectral densities in the mean square sense, including 
uniform and nonuniform sampling. The sampling theorem in the fractional Fourier 
domain and its relation to the von Neumann ergodic theorem were also discussed in 
[24].

For periodic nonuniform sampling, the offset of sampling time tn from the equal 
interval sampling time sequence nT has a periodic structure with a period of M, 
where T is the average sampling period and M is an integer. The sampling time is 
tn = nT + rnT = (kM +m)T + rmT  , where rnT  is the offset of tn from nT and 
m ≡ n (mod M) [22]. This means that the adjacent sampling points are not uniform, 
but the interval between each sampling point and the subsequent sampling point is 
equal. The total sampling period is MT [25, 26]. It is often applied in analog-to-digital 
(A/D) sampling technology, combining M AD converters with lower sampling rate to 
obtain one virtual sensor with high sampling rate [22]. Tao et al. [27] derived the peri-
odic nonuniform sampling and reconstruction in the fractional Fourier domain. The 
sampling theorem verified that if a signal was band-limited or compact in a fractional 
Fourier domain, it could be sampled by using the fractional Fourier transform instead 
of the Fourier transform with a larger sampling interval. The fractional Fourier Trans-
form has been proved as a perfect tool to improve the reconstruction quality [28].

However, nonuniform sampling with the condition of equal arc interval is neither 
the randomized nonuniform sampling with a known distribution such as Gaussian 
distribution sampling noise nor periodic nonuniform sampling. There is no research 
on nonuniform spatial sampling for contact sensor arrays with the condition of equal 
arc interval. In this article, two theorems of nonuniform spatial sampling with the 
condition of equal arc interval are studied. The definition of nonuniform spatial sam-
pling and associated mathematical expression are given. Then, the condition of nonu-
niform spatial sampling is derived from the frame theorem. For general nonuniform 
spatial sampling, the condition of sampling interval is obtained by the Kadec theorem. 
For the strictly increasing sampling set, the condition of sampling interval is obtained 
by the Benedetto theorem. In order to verify the correctness of the condition of nonu-
niform spatial sampling, two simulations and a test are carried out. Finally, a conclu-
sion is presented.
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2 � Methods
2.1 � Definition of nonuniform spatial sampling with the condition of equal arc interval

Figures 1 and 2 show uniform and nonuniform spatial sampling, respectively. The ‘o’ in 
Figs. 1 and 2 is the sampling point. In the uniform sampling, the interval of the x-axis is 
spaced equally, which is x in Fig. 1. In the nonuniform case, the interval of the x-axis is 
spaced unequally which is (xi−xi−1) �= (xi+1−xi), i = 1, 2, 3 . . . (Fig. 2) and the arc length 
of , i  = j is equal. The sampling point set {xi, i = 0, 1, 2, 3 . . .} is strictly increasing when 
xi−xi−1 > 0 for any i.

2.2 � The mathematical expression of the nonuniform spatial sampling with the condition 

of equal arc interval

Assume that f (x), x ∈ [0, L] is a mathematical expression of a detected object (such as a 
ribbon of terrain) which is a band-limited function. The terrain is detected by a MEMS 
9-axis sensor array [1–3]. In other words, f (x) is sampled with the condition of equal arc 
length. N is the sample number which can be obtained by N = L X (L is the arc length 
of the f (x) , and x is the arc length of sensors which have an equal spatial interval at the 
beginning). Set fs(x) = f (xn) is the sampling value. Like the process of uniform sam-
pling, nonuniform sampling is the product of a series of impulse series and the original 
function.

Figure 3 shows the process of nonuniform spatial sampling with equal arc length. In 
contrast to uniform sampling, the impulse series does not have periodicity (equal inter-
vals), which can be expressed as

Fig. 1  Uniform spatial sampling

Fig. 2  Nonuniform spatial sampling
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where xn is the projection of the sampling point on the x-axis. Sampled signal fs(x) is the 
product of the impulse series S(xn) and the original function f (x) , which shows as

As seen from formula (2), the sampled signal fs(x) is an impulse series weighted by the 
values f (xn).

2.3 � The condition of nonuniform sampling with equal arc length

2.3.1 � Frame theorem

A sequence {fn, n ∈ Z} in a Hilbert space H is called a frame [17, 29, 30], if there exist 
constants A,B > 0 , such that for all f ∈ H,

where 〈 〉 is the inner product, which is defined as 
〈

f , fn
〉

=
∫

R

f (x)fn(x)dx ( fn(x) is the 

conjugation of fn(x) , 
∥

∥f
∥

∥ is the norm of the f which is 
∥

∥f
∥

∥ =
〈

f , f
〉
1
2.

In the frame theorem, the sampling point set is {xn}n∈Z and the sampling value set is 
{f (xn)}n∈Z . In order to completely reconstruct the band-limited function f (x) from the 
sampling value set {f (xn)}n∈Z , the following inequality (4) should be met.

(1)S(xn) =

N
∑

n=1

δ(x − xn)

(2)

fs(x) =f (x) · S(xn)

=

N
∑

n=1

f (xn) · δ(x − xn)

(3)A
∥

∥f
∥

∥

2
≤

∑

n∈Z

∣

∣

〈

f , fn
〉∣

∣

2
≤ B

∥

∥f
∥

∥

2

Fig. 3  Process of the nonuniform sampling
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where f (x) ∈ PW�,which is the Paley–Wiener space. It is defined as 
PW� =

{

f (x) ∈ L2(R) : suppf̂ ⊆ [−�,�]
}

 . It is a Hilbert space, considered as a closed 

subspace of L2(R) taken with the L2-norm. f̂  is the Fourier transform of the f (x)
. f̂ (ξ) = lim

n→∞

n
∫

−n

f (x)e−2π iξxdx . The support condition, suppf̂ ⊆ [−�,�] , is described by 

saying that f is �-band-limited. f̂ (ξ) = 0 when |ξ | ≥ � . � is the maximum frequency of 
function f (x) . When {ej2π�xn}n∈Z is the frame for PW� , the function f (x) can be recon-
structed by the sampling value set {f (xn)}n∈Z.

2.3.2 � Condition of nonuniform sampling with equal arc length

(1)	 The general nonuniform sampling with equal arc length.

	 From the Kadec theorem [3], when the sampling point set {xn}n∈Z satisfies inequality 
(5)

{ej2π�xn}n∈Z is the frame of PW� . Inequality (5) can be expanded as

	 Then, inequality (6) can be expressed as

	 From inequality (7), it can be concluded that when the spatial arc length interval 
of the sensor array is not greater than 1

4� , there is more than one sampling point in 
the range 

[

(n− 1) 1
4� , n

1
4�

]

, n = 1, 2, . . . , and the sampling point set is denoted as 

{xn} . Then, values can be extracted from the set {xn} and form a new set {x̃n} which 
should satisfy the inequality (7). The derivation process is as follows: Fig. 4 shows the 
derivation schematic diagram of the spatial sampling interval. Taking n = 1 for exam-
ple, assume that there is a sampling point in the range 

[

1
4� ,

1
2�

]

 . When the sampling 

point is in the range 
[

3
8� ,

1
2�

]

 (dash area in Fig. 4), inequality (7) is satisfied. When the 

sampling point is in the range 
[

1
4� ,

3
8�

]

 (blue area in Fig. 4), there must be another 

sampling point in the range 
[

3
8� ,

5
8�

]

(yellow area in Fig. 4), satisfying inequality (7). 

This is because the interval of the range 
[

3
8� ,

5
8�

]

 and maximum spatial interval is 

equal, which is 1
4� . Moreover, when there is more than one sampling point in the 

range 
[

1
4� ,

1
2�

]

 , the derivation above is also set up. Therefore, a new set 

{x̃n, n = 1, 2, . . . ,N } always can be extracted which satisfies inequality (7). In other 
words, when the arc length interval of the sensor array is not greater than 14� , inequal-
ity (5) is satisfied. The frame bound A and B are not given in inequality (4). It is given 

(4)A
∥

∥f
∥

∥

2
≤

∑

n∈Z

∣

∣f (xn)
∣

∣

2
≤ B

∥

∥f
∥

∥

2

(5)sup
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∣

∣

∣
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n
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∣

∣
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1
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+
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by theorem 1.Theorem 1  [3]: Assume that there are constant ε , α and β , 0 < ε < 1 , 
α > 0 , β > 0 , and sampling point set {xn}n∈Z satisfied the following two inequalities, 
denoted as condition 2 and condition 3, respectively:

	   Then, there exist constants A and B, 0 < A ≤ B , that are related to ε , α and β such 
that inequality (4) for all f ∈ PW�.

	 Derivation of sampling conditions: The sampling point set {xn}n∈Z satisfies condition 
2, |xn − xm| ≥ α > 0 , when the detected object is not vertical (actually, the case of 
vertical is similar to the horizontal case). In other words, the spatial sampling inter-
val between sampling points always is greater than zero, and there exists α , which 
satisfies condition 2, |xn − xm| ≥ α > 0.

	 For condition 3, sup
n∈Z

∣

∣xn − ε
n
2�

∣

∣ ≤ β < ∞ can be interpreted that all sampling points 

xn need to satisfy −β ≤ xn − ε
n
2� ≤ β , which can be transformed as:

	 As the above analysis shows, there must exist a sampling point in the range 
[

(n− 1) 1
4� , n

1
4�

]

, n = 1, 2, . . . , 2N  , which means that (n− 1) 1
4� ≤ xn ≤ n 1

4� . 

Therefore, in order to satisfy inequality (9), inequality (10) should be satisfied:

	 Add the two inequalities in (10), then we get β ≥ 1
8� . Set β = 1

4� and use in the ine-
quality n

4� ≤ β + ε
n
2� and simplifying, we get ε ≥ 1

4 − 1
n . What is more, 0 < ε < 1 , 

setting ε = 1
4 (n > 0) is satisfied. Therefore, the sampling point set satisfies condi-

tion 2 and condition 3 at the same time when β = 1
4� and ε = 1

4.
	 It can be seen that when the equal arc length interval between the sampling points 

is half of the Nyquist sampling interval or one quarter of the period corresponding 
to the highest frequency of the detected object, the original function f (x) can be 
reconstructed completely. [End of derivation.]

	 However, the sampling interval based on the nonuniform sampling theorem is 
larger. The more the sampling points, the more the sensors, the more compli-
cated is the sensor network and the more cost. In applications such as underwa-
ter seabed monitoring based on sensors, the sampling point set is strictly increas-
ing {xi|xi − xi−1 > 0, i = 1, 2, 3 . . .} . Therefore, nonuniform sampling theorem for 
increasing sampling is introduced which can obtain a less sampling interval.

(8)

{

|xn − xm| ≥ α > 0, n �= m
sup
n∈Z

∣

∣xn − ε
n
2�

∣

∣ ≤ β < ∞

(9)−β + ε
n

2�
≤ xn ≤ β + ε

n

2�

(10)
{ n

4� ≤ β + ε
n
2�

−β + ε
n
2� ≤ n−1

4�

Fig. 4  Derivation schematic diagram of the spatial sampling interval
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(2)	 The nonuniform sampling of a strictly increasing sequence with equal arc 
length.Theorem 2  In the frame theory, Marvasti [29] and Benedetto [30] state 
that the sample points set {xn, n ∈ R} ⊆ R are strictly increasing for which

and

For a given � > 0 , assume that �1 > � satisfies the condition

Then, {ej2π�xn , n ∈ Z} is a frame of PW� . Frame boundaries A and B satisfy inequalities 
A ≥ (1−2T�)

2

T  and B ≤ 4
π2�d2

(eπ�d − 1) . The frame of is exact, which means it is 
no longer a frame whenever anyone of its elements is removed.Derivation of sam-
pling conditions: If the detected object is not a vertical line, such as the slope of 
detected terrain is less than 90°, the sampling point set {xn, n = 1, 2, . . . ,N } satisfies 
the condition of strict increase for all xn . In practical applications, the detected 
object is limited, which means lim

n→±∞
xn < ∞ . The sampling point set and sampling 

value set should be extended to satisfy the condition. The idea of extension is that 
for sampling points, the sampling points should strictly increase and the difference 
between adjacent sampling points is less than 12� . Therefore, the extension sampling 
point set {x̃n, n = −∞, . . . , 1, 2, . . . ,∞} meets the condition of 
sup(x̃n+1 − x̃n) <

1
2� < ∞ , 0 < inf(x̃n+1 − x̃n) and lim

n→±∞
x̃n = ±∞ . For the sam-

pling values, the extended sample values are set as zeros and the original sample 
values were kept unchanged. Denote the extension sampling value set as 
{f (x̃n), n = −∞, . . . , 1, 2, . . . ,∞} ; f (x̃n) = 0 was set when n < 1 and n > N  . 
f (x̃n) = f (xn) was set when n = 1, 2, . . . ,N .It can be obtained that the nonuniform 
sampling set can completely reconstruct the original signal when the arc length 
interval of a sensor array is less than 1

2� , and there should be more than one sam-
pling point in the range 

[

(n− 1) 1
2� , n

1
2�

]

=
[

(n− 1)π3 , n
π

3

]

, n = 1, 2, . . . ,N  . [End 

of derivation.]The main difference between the two frame theorems is whether the 
sampling point set satisfies strictly monotonically increasing. If not, it is a general 
nonuniform sampling; the sampling condition can be deduced that the equal arc 
length interval of the sensors should be less than 14� . If it does, it is a strictly increas-
ing sampling, the condition is that the equal arc length interval of the sensors 
should be less than 12� . The � is the maximum frequency of the detected object. It is 
the minimum number of sampling points needed. It is proved theoretically that 
equal arc length nonuniform sampling can reconstruct the original signal, which 
can be used to guide technicians on the application of contact sensor arrays for 
shape monitoring.

3 � Simulation
3.1 � Simulation of general nonuniform spatial sampling theorem

A simulation for the nonuniform sampling condition and reconstruction method is 
carried out. Any signal can be superimposed by sinusoidal signals and cosine signals. 

lim
n→±∞

xn = ±∞

0 < d ≤ inf
n
(xn+1 − xn) ≤ sup

n
(xn+1 − xn)=T < ∞

2T�1 < 1
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Therefore, a cosine signal and a composite signal consisting of sine and cosine are 
selected for the simulation. The cosine signal is f (x) = cos(3x), x ∈ [0, 10] , and the com-
posite signal is f (x) = 0.5 sin(2x)+ cos(3x), x ∈ [0, 10][0, 10] . According to reference 
[31], the sampling points are reconstructed by spline interpolation, which is used in this 
article.

The maximum frequency of both signals is � = 3
2π  . According to the above analy-

sis, the spatial sampling interval should be less than 1
4� = π

6 ≈ 0.52 . The sampling 
interval is regarded as 0.5, and there must be more than one sampling point in the 
range 

[

(n− 1) 1
4� , n

1
4�

]

=
[

(n− 1)π6 , n
π

6

]

, n = 1, 2, . . . ,N  . As mentioned above, one 

sampling point in the range 
[

(n− 1) 1
4� , n

1
4�

]

=
[

(n− 1)π6 , n
π

6

]

, n = 1, 2, . . . ,N  is the 

boundary condition. (The sampling point set can reconstruct the original function 
completely in the worst case.) Then, the sampling number N  is 
N = L

/

T = 10
/(

π
/

6
)

≈ 19 . Figures 5 and 6 are the cosine signal, composite signal, 
sampling points with random and equal arc length, reconstructing signals, respec-
tively. The random sampling points are random numbers in the range 
[

(n− 1) 1
4� , n

1
4�

]

=
[

(n− 1)π6 , n
π

6

]

, n = 1, 2, . . . ,N  which are blue hollow circles in 

Figs.  5 and 6. The arc length between adjacent sampling points is not equal. The 
respective reconstructing signals are green dotted lines in Figs. 5 and 6. If the sam-
pling points satisfy the condition with equal arc length, the interval of sampling 
points with equal arc length is 1

4� = π

6  which are pink solid circles. The arc length 
interval is regarded as 0.5. For the cosine signal, the arc length is 22.28 and the sam-
pling number required is 46. For the composite signal, the arc length is 21.81 and the 
sampling number required is 45. The respective reconstructing signals are red dot-
ted lines in Figs. 5 and 6. The solid black line in both figures is the original signal.

The reconstructing signals are basically consistent with the original signals. In 
order to evaluate the accuracy of the reconstruction, the relative root mean square 
error (RRMSE) and mean relative error (MRE) between the original signal and the 
reconstructing signal are calculated.

From Table  1, Figs.  5 and 6, first, the reconstructing error of both is mainly at 
the extremum points (cyan areas in Figs. 5 and 6), where the nonuniform sampling 
points are far away from the extremum points. Therefore, the reconstructing error 
is related to the distribution of nonuniform sampling points. Second, the sampling 
numbers with equal arc length are more than random sampling, and the reconstruct-
ing error of sampling with equal arc length is much less than random sampling. This 
is because the arc length (about 22) is much longer than the x-axis range (from 0 to 
10). The sampling number with equal arc length is more than twice the random sam-
pling. According to the general nonuniform sampling theorem, there must be one 
sampling point in the range [(n− 1) ∗ 0.5, n ∗ 0.5], n = 1, 2, . . . , 20 . And there are more 
than two sampling points in the range [(n− 1) ∗ 0.5, n ∗ 0.5], n = 1, 2, . . . , 20 n!

r!(n−r)! 
when the arc length interval is 0.5. In other words, the sampling frequency is more 
than twice the sampling frequency of the general nonuniform sampling theorem.
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3.2 � Simulation of strictly increasing nonuniform sampling theorem

The same simulation signals are selected. As mentioned above, there must be more than 
one sampling point in the range 

[

(n− 1) 1
2� , n

1
2�

]

=
[

(n− 1)π3 , n
π

3

]

, n = 1, 2, . . . ,N  

when the signal can be reconstructed completely, the number of sampling points should 
be more than N = L

/

T = 10
/(

π
/

3
)

≈ 10 according to the strictly increasing nonuni-
form sampling theorem. In the practical application, the equal arc length is deployed on 
the arc, the spatial equal arc length interval should be less than 1

2� = π

3 ≈ 1.05 . Take the 
interval as 1 for example, the arc length of the cosine signal is 22.28, and the arc length of 
the composite signal is 21.81. The number of sampling points is 23. The sampling inter-
val is shorter, sampling points are more, and the reconstruction accuracy is higher. The 
different sampling intervals are tested which progressively decrease from 1.02 to 0.82 at 
an interval of 0.05 (0.05 × 1.02). Figure 7 shows the cosine signal, the sampling points 
with different arc length interval, reconstructing signals, respectively, and Fig. 8 shows 
the ones of the composite signal. Table 3 shows the reconstruction error of nonuniform 
sampling with different equal arc length interval. The RRMSE and MRE between the 
original signal and the reconstructing signal are also calculated.

From Figs. 7 and 8 and Table 2, first, it can be seen that the arc length of the sinusoi-
dal signal and composite signal is about the same and has the same highest frequency; 
the same sampling points are needed when the arc length interval is the same. Second, 
the smaller the arc length interval, the less the reconstruction error. Third, the RRMSE 
and MRE of the reconstruction error are less than 5% when the arc length interval is 
1.02 (the condition of the strictly increasing nonuniform sampling theorem). Those are 
less than 3% when the arc length interval is 0.87 (0.85 × 1.02). This is because the con-
dition of the strictly increasing nonuniform sampling theorem is that there must have 
more than one sampling point in the range [(n− 1) ∗ 1.05, n ∗ 1.05], n = 1, 2, . . . , 10 . 
When the arc length interval is 1.02, the number of sampling points is 23 and there are 
more than two sampling points in the range [(n− 1) ∗ 1.05, n ∗ 1.05], n = 1, 2, . . . , 10 . In 

Fig. 5  Cosine signal, sampling points with random and equal arc length, and reconstructing signals, 
respectively
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other words, the sampling frequency is more than twice the sampling frequency of the 
strictly increasing nonuniform sampling theorem. When the arc length interval is 0.87 
(0.85 × 1.02), the number of sampling points is 27 and the sampling frequency is more 
than 2.5 times the sampling frequency of the strictly increasing nonuniform sampling 
theorem. Fourth, compared to simulation of the general nonuniform spatial sampling 
(Table 1), the RRMSE and MRE are much bigger when the arc length interval is 1.02, 
which satisfies the condition of the strictly increasing nonuniform sampling theorem. 
This is because the signal in spatial domain is limited. The frequency spectrum is infi-
nite. There is some energy missing when the highest frequency is regarded as � = 3

2π  . 
The arc length interval in the simulation of the general nonuniform spatial sampling is 
much less than the one in this case, and the accuracy is much higher.

4 � Application of the strict increasing nonuniform sampling theorem
4.1 � Test platform design

The experimental platform mainly includes terrain deformation simulation system, 
three-dimensional (3D) laser scanner, sensor arrays and computer for data process-
ing and terrain display. The structure of the experimental platform is shown in Fig. 9, 
and the real figure is shown in Fig. 10. The deformation of the terrain is simulated by 
the platform which is 1.8 m × 2.1 m. (The length along the sensor array is 2.1 m, and 
the length in the direction perpendicular to the sensor array is 1.8  m.) The sixteen 
(4 × 4) screw slides are arranged in the area. The distance between the screw slides 
is 70 cm and 45 cm. The heights of the screw slides are controlled by the motors. The 
shapes of the terrain are constructed by the different heights of the screw slides. Six 
sensor arrays (Fig. 10) are arranged on the net and one end is fixed. Each sensor array 
is 2.1  m in length. The sensor array #1, #3, #4 and #6 is located directly above the 
screws, and their status can be changed directly by the screws. The shape change of 
sensor array has little effect on other ones. Therefore, the sampling of the sensor array 
is regarded as one-dimensional nonuniform sampling (Figs. 11, 12, 13, 14).

Fig. 6  Composite signal, sampling points with random and equal arc length, and reconstructing signals, 
respectively
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The experimental platform includes a 3D laser scanner, and the data obtained by the 
3D laser scanner will be used as the real value of the terrain. The accuracy of the 3D 
laser scanner is 3 mm. The 3D laser scanner scans the terrains, obtaining the point 
cloud data, which are processed by the software Cyclone, including point cloud data 
simplification, segmentation and coordinate extraction.

4.2 � Test results analysis

The one-dimensional amplitude spectrum of terrain is calculated. The data are extracted 
at intervals of 0.02 m in the x-axis direction when y = 0.1 m, 0.2 m…, 2.1 m (the interval 
is 0.3 m). The sample number is 105. The sampling frequency is fs = 105/2.1 m = 50 m−1.

Figure  15 shows the one-dimensional relative amplitude spectrum (the centralized 
spectrum) when the y = 0 m. The terrain is limited in space; the frequency spectrum is 
infinite. The lowest frequency of the terrain is zero, and the highest frequency is defined 
as effective bandwidth in which the frequency range contains 95% energy of the terrain. 
Tables 3, 4 and 5 are the highest frequency of these three terrains when y is fixed, respec-
tively. As can be seen from Fig. 15 and Tables 3, 4 and 5, the frequencies of the three ter-
rains are all concentrated in the low frequency and the highest frequency � is 1.428 m−1. 
According to the nonuniform sampling theorem with equal arc length, the arc length 

Table 1  Reconstructing error of nonuniform sampling with random and equal arc length

Random sampling Sampling with equal arc length

RRMSE (%) MRE (%) Sampling 
number

RRMSE (%) MRE (%) Sampling 
number

Cosine signal 10.28 10.44 20 0.33 0.17 46

Composite signal 10.23 13.22 20 0.34 0.21 45

Fig. 7  Cosine signal, random sampling points, sampling points with equal arc length (interval is 1.02, 1.02 × 
0.95, 1.02 × 0.90, 1.02 × 0.85, 1.02 × 0.80) and reconstructing signals, respectively
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interval between sensors should be less than 1
2� ≈ 0.35 m . The arc length interval is 

regarded as 0.3 m in this article.
The sensor array senses the tilt angle of the terrains and conducts data collection, pro-

cessing, modeling and display on a computer. The coordinates of the sensor array are 
used to analyze the reconstruction error. Table 6 shows the reconstruction error statis-
tics. The RRMSE and MRE between the original signal and the reconstructing signal are 
also calculated.

From Table  6, a strong agreement is demonstrated between the data from the 
sensor array and data from the 3D laser scanner. The RRMSE is 8.84% (the sensor 
array #5 of shape #2). The maximum MRE is 10.56% (the sensor array #5 of shape 
#1). There are three main reasons for the errors: first, the measurement errors of 
sensors. According to the datasheet of the sensor, the angle error obtained by the 
MEMS accelerometer is 0.1º. The arc length interval is 30  cm. The error caused by 
the sensor is 0.05 cm; the MRE is 0.17%. Second, the monitoring range of the terrain 
is limited. In other words, the signal is limited in the spatial domain. Though the arc 
length interval satisfies the strictly increasing nonuniform sampling theorem, the arc 
length interval accounts for reconstruction error. According to the above simulation, 
the error caused by the reconstruction error is less than 5%. Third, the measurement 
errors may increase because the sensors could not fit well with the terrain surface 
when the surface moves.

5 � Discussion
The conditions of nonuniform spatial sampling with an equal arc length interval are 
derived from two frame theorems. Similar to the Shannon sampling theorem, the sam-
pling boundary condition is the minimum number of sampling points needed. It is 

Fig. 8  Composite signal, random sampling points, sampling points with equal arc length (interval is 1.02, 
1.02 × 0.95, 1.02 × 0.90, 1.02 × 0.85, 1.02 × 0.80) and reconstructing signals, respectively
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proved theoretically that equal arc length nonuniform sampling can reconstruct the 
original signal, which can be used to guide technicians on the application of contact sen-
sor arrays for shape monitoring.

(1)	 The main difference between the two frame theorems is whether the sampling 
point set satisfies strictly monotonically increasing. If not, it is a general nonuni-
form sampling; the sampling condition can be deduced that the equal arc length 
interval of the sensors should be less than 1

4� . If it does, it is a strictly increasing 

Table 2  Reconstruction error of nonuniform sampling

Arc length interval Cosine signal Composite signal

RRMSE (%) MRE (%) Sampling 
number

RRMSE (%) MRE (%) Sampling 
number

1.02 (random) 124.22 258.56 10 112.50 242.52 10

1.02 4.04 2.31 23 3.81 4.85 23

0.97 (0.95 × 1.02) 3.35 2.26 24 3.17 4.74 24

0.92 (0.90 × 1.02) 2.49 1.90 26 2.87 3.62 25

0.87 (0.85 × 1.02) 2.45 1.70 27 2.15 2.99 27

0.82 (0.80 × 1.02) 1.42 0.84 27 1.63 1.88 29

Fig. 9  Structure diagram of terrain deformation simulation platform

Fig. 10  Shape #1 of simulation terrain
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sampling; the condition is that the equal arc length interval of the sensors should be 

Fig. 11  Terrain data obtained by 3D laser scanner

Fig. 12  Shape #1 of the terrain

Fig. 13  Shape #2 of the terrain

Fig. 14  Shape #3 of the terrain
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less than 12�.
(2)	 From the simulations, it can be seen that reconstruction error is related to sampling 

numbers and the distribution of nonuniform sampling points. First, the nonuni-
form sampling points are far away from the extremum points which may cause big-
ger error at extremum points. Second, the more the sampling number, the smaller 
the arc length interval, and the less the reconstruction error. From the test, it can 
be seen that reconstruction error is related to the energy loss in the calculation of 
the maximum frequency, sensor accuracy, as well as the fit between the sensor and 
the detected object. The less the energy loss in the calculation of the maximum 
frequency, the higher the sensor accuracy, the well fit between the sensor and the 
detected object, the less the reconstruction error.

(3)	 Assume that the arc length of the detected object is L and the arc length interval 
of the sensor array is l. The sensor array with equal arc length can be deployed on 

Fig. 15  One-dimensional amplitude spectrum of terrain deformation shape #1 (taking y = 0 m as an 
example)

Table 3  Highest frequency of shape #1

y (m) 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

Highest frequency(m−1) 0.476 0.476 0.476 0.476 0.476 0.952 0.476 0.476

Table 4  Highest frequency of shape #2

y (m) 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

Highest frequency(m−1) 0.952 0.476 0.476 0.952 1.428 0.952 0.476 0.476

Table 5  Highest frequency of shape #3

y (m) 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

Highest frequency (m−1) 0.476 0.476 0.476 0.476 0.952 0.476 0.476 0.952
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which the highest frequency of the detected object is less than � <
1
4l

 or � <
1
2l

 . 
For the latter, the x-axis coordinates of the detected object should be strictly 
increasing.

(4)	 The contact sensors, which would move with the detected object, are deployed to 
monitor the shape changes of the detected object. The sampling interval located 
on the x-axis will become nonuniform even though it is uniform at the beginning. 
Therefore, the sensors are set at the equal arc length interval when the detected 
object is flat at the beginning. In this case, the number of sampling points is greater 
than the uniform sampling.

(5)	 In the future, the sensor placement with two‐dimensional equal arc length non‐uni-
form sampling can be studied for the surface monitoring based on the contact sen-
sor network.

6 � Conclusion
In this article, nonuniform spatial sampling with an equal arc length interval is pre-
sented. The definition of the nonuniform spatial sampling and associated mathematical 
expression is given. The conditions of nonuniform spatial sampling are derived based 
on the frame theorem. Two simulation and an application test are carried out to obtain 
the correctness of the sampling conditions as well as the relationship between sampling 
frequency and reconstruction precision. The results can guide technicians on the appli-
cation of contact sensor arrays for shape monitoring with less sensors and high accuracy.
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Table 6  Reconstruction error statistics

Shape Sensor array RRMSE (%) MRE (%)

Shape #1 Array #1 6.57 6.57

Array #2 7.97 9.83

Array #3 7.02 8.78

Array #4 4.13 5.31

Array #5 7.82 9.50

Array #6 8.68 10.56

Shape #2 Array #1 5.04 6.31

Array #2 8.68 10.73

Array #3 7.12 8.66

Array #4 4.97 5.58

Array #5 8.84 10.00

Array #6 5.98 7.18

Shape #3 Array #1 4.26 6.44

Array #2 8.77 10.42

Array #3 7.19 9.71

Array #4 3.03 5.21

Array #5 7.87 9.37

Array #6 3.09 4.57
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