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1  Introduction
Bridges over water bodies are the key node of the transportation network. Monitoring 
them is valuable for city surveillance, disaster assessment, and military reconnaissance 
[1, 2]. In remote sensing images, bridges over water bodies appear with different scales, 
shapes and textures. They have a high diversity of orientations and backgrounds. It is not 
easy to detect them accurately in aerial images.

Before the emergence of deep-learning technologies, prior knowledge and hand-
crafted features are widely used by classical methods to detect bridges in remote sensing 
images [3–5]. Two-step approach is usually adopted. Waterbody regions are separated 
from land regions firstly, and then, bridges are further extracted from the waterbody 
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regions. The system proposed by Loménie et  al. [6] categorizes terrain pixels accord-
ing to their semantic meaning, and then, manually produced spatial decision rules are 
applied to locate bridges. Han et al. [7] analyze textures based on the gray level co-occur-
rence matrix. Correlation, entropy and homogeneity features are chosen to distinguish 
the rivers, and Hough transformation is applied for extracting the bridges. Luo et al. [8] 
use the Gauss Markov Random Field (GMRF)-Support Vector Machine (SVM) classi-
fication method to extract water bodies. And then, the bridge’s main trunk is detected 
by static rules in the thinned image. The method proposed by Zhao et al. [9] gets bridge 
region candidates by saliency detection in compressed domain firstly. And then, these 
candidates are validated through Extreme Learning Machine (ELM) classification with 
Local Binary Patterns (LBP) feature; the final detection results are obtained. Chen et al. 
[10] apply the histogram-based threshold segmentation method for extract water bodies. 
On the basis of direction-augmented linear structuring elements, mathematical mor-
phology method is utilized by them to extract the bridges. Gedik et al. [11] propose an 
algorithm for detecting bridges over water bodies in NDWI [12] images. Water regions 
are obtained through thresholding the NIR and clustering the NDWI images. Certain 
geometric constraints are adopted to identify river and water canals, and morphological 
operations are applied to locate bridges. Classical methods usually are clear in physi-
cal meaning. However, bridges are of varying backgrounds, textures and shapes in com-
plex scenarios. Only relying on hand-crafted features and manually introduced decision 
rules is less robust. For example, it is difficult for classical methods to detect bridges with 
extreme aspect ratios in water bodies with different reflective spectral characteristics.

The past decade has witnessed the tremendous advances of deep-learning technolo-
gies [13, 14]. Since AlexNet was proposed in 2012, extensive researches have been 
devoted to designing advanced convolutional neural networks (CNNs). To have more 
powerful feature extraction abilities, networks are designed to be deeper and more 
complex [15–17]. But it is nontrivial to holistically redesign the network architecture. 
Thus, researchers propose some modules that can be easily embedded into existing 
networks to enhance network capabilities. These modules have played a positive role 
in various tasks and achieved impressive results. For instance, deformable convolu-
tional modules are presented to solve the problem that regular CNNs are inherently 
limited to model geometric transformation [18, 19]. They have flexible receptive field 
shapes to fit the contours of objects, which are very effective for computer vision 
tasks. Attention modules implement adaptive weight adjustment within multi-dim 
feature maps. Channel attention modules model the channel-wise relationships and 
weight each channel. The pioneering work is Squeeze-and-excitation (SE) block [20]. 
Global average pooling is used to squeeze spatial information of the input feature. 
Full-connected layers and activation function layers are used to generate channel-
wise weights. Most of the subsequent works follow the idea of SE to further enhance 
the power of channel modeling [21–23]. Different from channel attention modules, 
spatial attention modules focus on key spatial regions. RAM [24] is built on Recurrent 
Neural Network, and it can be trained by reinforcement learning methods. GENet 
[25] first aggregates feature responses across spatial neighborhoods and then mod-
ulates the input feature map according to the aggregated result. In addition, spatial 
attention mechanism can also be implemented by self-attention modules [26, 27]. 
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These embedded modules perform well in various computer vision tasks such as 
image classification, object detection and semantic segmentation [28]. It is valuable to 
apply them to remote sensing tasks including bridge detection.

In computer vision community, deep-learning-based detection methods generally 
can be grouped into two categories: region proposal-based detectors and regression-
based detectors. Region proposal-based detectors frame the detection as a “coarse-
to-fine” process [29]. R-CNN [30] first adopts the convolutional neural network to 
extract features. The Region Proposal Network of Faster R-CNN [31] greatly improves 
the efficiency of region proposal. Cascade R-CNN [32] consists of a sequence of 
detectors trained with increasing intersection over union (IoU) thresholds to achieve 
better detection performance. While regression-based detectors achieve the detec-
tion task in one step [29]. YOLO series [17, 33, 34] are characterized by strong real-
time performance and fast inference speed. CornerNet [35] obtains bounding boxes 
based on the prediction of top-left and bottom-right corner keypoints. CenterNet 
[36] returns the properties of the objects from center points. New deep-learning-
based algorithms are constantly being proposed. But today, the classic Faster R-CNN 
and YOLO series are still widely adopted in industry because of their reliability.

Many detection algorithms based on CNNs have been adopted in the field of earth 
observation. For instance, YOLT [37] is proposed to detect small objects in satellite 
images. CAD-Net [38] combines global and local contexts, and spatial-and-scale-
aware module is designed on the basis of feature pyramid structure. Especially, 
Nogueira et al. [39] compare the performances of several deep-learning-based detec-
tors on their bridge detection datasets. Some works pay attention to detect bridges in 
SAR images [40, 41]. But only horizontal bounding boxes of bridges are predicted by 
these methods. Some algorithms achieve oriented object detection, such as SCRDet 
[42], SCRDet++ [43], and R3det [44]. But a large number of oriented bounding box 
annotations are required by them.

Inspired by the progress in the fields of remote sensing and computer vision, this 
paper explores a efficient bridge-over-water detection scheme, as shown in Fig. 1. The 
scheme is driven by data and knowledge sequentially. Firstly, the backbone network 
of deep-learning-based detector is optimized by the proposed method of combin-
ing modulated deformable convolution (Mdconv) and attention mechanisms. Then, a 
post-processing guided by prior knowledge is presented. Horizontal bounding boxes 
(HBBs) are converted to oriented bounding boxes (OBBs).

Specifically, the main contributions of this paper can be summarized as follows: 

Fig. 1  Principle of the proposed scheme
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1	 The modulated deformable convolution is introduced in bridge-over-water detec-
tion. The flexible receptive field can adapt to various bridge shapes and contours.

2	 The channel and spatial attention mechanism is further applied to improve the 
detection performance especially for small bridges. We design a weighted channel 
and spatial attention (WCSA) structure. The contributions of channel and spatial 
attention mechanisms at different stages of different backbone networks can be dem-
onstrated. Moreover, we design a selective channel-spatial attention (SCSA) usage 
strategy. Our experiments demonstrate that the SCSA strategy can perform well in 
different detection architectures. The attention redundancies within backbone net-
works are effectively reduced.

3	 To locate bridge-over-water more precisely, a post-processing is proposed to convert 
the HBBs to the OBBs, and we name it bounding box conversion module (BBCM). 
Our experiments demonstrate that prior knowledge is sufficient to guide the conver-
sion process in most situations.

The remainder of the paper is organized as follows: Sect.  2 describes the proposed 
bridge-over-water detection scheme in detail. Sect. 3 reports and discusses the experi-
mental results. Sect. 4 concludes this paper.

2 � The proposed method
Figure  2 shows an overview of our bridge-over-water detection scheme. Data-driven 
method and knowledge-driven method are employed by our scheme successively. Firstly, 
the deep-learning-based detector with the improved backbone network predicts the 
HBBs of bridges. Deep network stack convolutional layers to obtain low/mid/high-level 
features, such as ResNet [15], DarkNet [17]. They naturally form in several stages. In this 
paper, the feature maps from the last 4 stages are further processed by other structures 
of the deep-learning-based detector. We embed modulated deformable convolutional 

Fig. 2  Overview of the proposed scheme for bridge-over-water detection
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layers in the last 3 stages. At the tail of the last 4 stages, we attempt to employ attention 
mechanism according to the SCSA strategy. The OBBs and the rotation angles of bridges 
are calculated by the presented BBCM, which contains frequency domain filtering, spa-
tial domain operations and clustering.

2.1 � Improved backbone network

In this paper, the proposed approaches are applicable to most backbone networks. 
For verification, we focus on the widely used DarkNet-53 (d53) in YOLOv3 architec-
ture and ResNet-50 (r50) in Faster R-CNN with FPN [45] architecture. DarkNet-53 
and ResNet-50 both stack convolutional layers to extract features. They both adopt the 
method of residual connection to mitigate the degradation problem of deep network. 
The hierarchical structures of our improved DarkNet-53 and improved ResNet-50 are 
illustrated in Fig. 3. The 5 stages of DarkNet-53 have 1, 2, 8, 8, and 4 building blocks, 
respectively. The 4 stages of ResNet-50 have 3, 4, 6, and 3 building blocks, respectively. 
The input image size is H ×W  . We annotate the details of each layer including: the 
number of repetitions of the building blocks, the type of layer, the size of the output 
feature map, the number of convolutional filters, the kernel size and the stride. Com-
pared with the original backbones, we replace some regular convolutional layers with 
the Mdconv layers and add some attention layers in this paper.

2.1.1 � Modulated deformable convolution

The sampling grid of regular convolution is fixed shape. However, bridges over water 
bodies have arbitrary orientations and aspect ratios in remote sensing images. Too 
many irrelevant background pixels are included in the square receptive field of regular 
convolution. It becomes difficult for neural networks to learn object-related features. 

Fig. 3  The hierarchical structures of the improved DarkNet-53 and improved ResNet-50
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The performance of deep-learning-based detector is inhibited. Therefore, modulated 
deformable convolution is introduced into our approach. On the basis of the regular 
convolution, the modulated deformable convolution adds an extra convolutional branch 
to regress offsets and modulation scalars of all sampling points. The process can be illus-
trated as:

where N is the number of convolution sampling points. x and f, respectively, are input 
feature map and output feature map. k is the center position of all sampling points. 
k + kn denotes the n-th sampling position of the regular convolution. wn represents 
the weight of convolutional kernel at n-th position. 3× 3 convolution corresponds to 
N = 9 and kn ∈ (−1, 1), (−1, 0), ..., (1, 1) . �kn denotes the adaptive offset, and the value 
of x(k + kn +�kn) is obtained by bilinear interpolation. �mn is the modulation scalar 
for the n-th position.

Though the performance obtained by Mdconv is better than the regular convo-
lution mode, the computational cost is huge. It cannot be ignored that the computa-
tional cost of Mdconv is higher than that of regular convolution. Considering a trade-off 
between the detection performance and the computational cost, we decide to selectively 
use Mdconv in the network instead of using it in all stages. Some experiments about 
the Mdconv on COCO [46] benchmark were conducted by Zhu et al. [19]. According 
to their results, adopting the Mdconv in the last 3 stages is the best choice for Faster 
R-CNN architecture with the ResNet backbone. No additional improvement is observed 
by further replacing the regular convolutional layers in the first stage of ResNet. It is 
therefore insufficient to implement Mdconv only in the last stage. For bridge-over-water 
detection, we have also performed experiments using the Mdconv at different stages 
of ResNet in Faster R-CNN with FPN architecture. The results show that adopting the 
Mdconv in the last 3 stages is also the best choice. To maintain consistency, we follow 
the setting for the improved DarkNet-53 and also use the Mdconv in its last 3 stages. 
The replaced building blocks of DarkNet-53 and ResNet-50 are demonstrated in Fig. 4 

(1)f (k) =

N

n=1

wn · x(k + kn +�kn) ·�mn

(a) (b)
Fig. 4  The replaced building blocks: a is the building block embedded with Mdconv of the improved 
DarkNet-53; b is the building block embedded with Mdconv of the improved ResNet-50
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a, b. We replace all 3× 3 regular convolutional layers in the last 3 stages of the backbone 
with 3× 3 Mdconv layers and keep the settings of other layers consistent with the origi-
nal DarkNet-53 and ResNet-50, such as pointwise convolutional layers and activation 
functions.

2.1.2 � WCSA structure and SCSA strategy

Various attention mechanisms have been proposed recently, and they can usually be 
expressed as

where x represents the input of the attention module, a represents the output feature 
map. g(x) denotes the process of generating attention weights, and g(x) is adaptively 
adjusted through gradient backpropagation. p(g(x), x) means that input x is processed by 
the attention weights.

Both channel and spatial attention mechanisms are beneficial for enhancing the net-
work capabilities, and some researchers work on combining them in one module. 
CBAM and BAM both are widely used channel and spatial attention modules. CBAM 
[47] sequentially infers channel and spatial attention maps. Average-pooling and max-
pooling are both adopted to describe feature. The channel-wise relationships are built by 
a shared multi-layer perceptron with one hidden layer, and the spatial-wise relationships 
are built by one convolutional layer with the kernel size of 7× 7 . Different from CBAM, 
BAM [48] arranges channel attention module and spatial attention module in parallel. 
Only average-pooling is used in the channel attention branch of BAM. Dilated convolu-
tion is applied by the spatial attention branch of BAM.

In this paper, for channel and spatial attention modules, we attempt to explore the 
necessity of two attention mechanisms at different stages of different backbone networks 
in this task. We hope that the attention mechanisms paired with the Mdconv can further 
improve the detection performance. The weighted channel and spatial attention struc-
ture is presented. The WCSA also sets the channel attention pathway and the spatial 
attention pathway in parallel. We add an adaptive weight to each pathway. Therefore, 
the network can more explicitly adjust the proportion of two attention mechanisms. By 
observing the changes of the pathway-weights, the roles of channel and spatial attention 
mechanisms in this task are transparent. As shown in Fig. 5, we build WCSA based on 
CBAM and BAM, respectively. For example, implementing WCSA based on CBAM, the 
two pathways of WCSA(CBAM) are, respectively, composed of the corresponding atten-
tion parts of CBAM. Because of the different design ideas and arrangements, CBAM and 
BAM may perform differently in various tasks. It is hard to judge theoretically which of 
them is better. And it is necessary to conduct experiments to explore their performance. 
We experimented with initializing all pathway-weights to 0, 0.5, and 1, respectively. The 
best results were obtained when they were initialized to 0.5, and this initial value was 
used in all our experiments.

We also design a selective channel-spatial attention usage strategy to eliminate redun-
dancies and avoid interferences. The SCSA strategy can be described as: 

(2)a = p(g(x), x)
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1	 when the training is completed, only the pathways with the corresponding weight 
values greater than 0.5 can be reserved.

2	 If all pathway-weight values are less than 0.5, the 4 pathways with higher values can 
be retained.

In particular, for SCSA(CBAM), if both channel and spatial attention mechanisms are 
reserved at a certain stage, we choose to continue using the original serial CBAM at that 
stage. Because we set the initial value of all pathway-weights to 0.5 in our experiments, 
we choose 0.5 as the threshold in the SCSA strategy. We consider that the contribution 
of a attention pathway is negative if its pathway-weight value gradually becomes smaller 
than its initial value during training. Otherwise the contribution of this pathway is posi-
tive and the pathway should be preserved. Therefore, it is reasonable and intuitive to use 
0.5 as the threshold in the SCSA strategy. The proposed strategy decides how to use or 
whether to use the attention mechanisms in each SCSA module according to the changes 
of all pathway-weight values. Under the constraint of the strategy, appending a SCSA 
module at the tail of each stage of ResNet-50 will not cause a large computational cost. 
Therefore, we choose employ the SCSA module after all 4 stages of ResNet-50. To main-
tain consistency, we also adopt the SCSA module after the last 4 stages of DarkNet-53.

2.2 � Bounding box conversion

Because of the diversity of bridges’ orientations in remote sensing images, using the 
axis-aligned bounding box to locate bridges is not accurate enough. Our scheme fur-
ther converts them to OBBs. The deep-learning-based detector has greatly reduced the 
regions of interest in our scheme. The HBBs usually do not contain overly complex ter-
rain textures in this task. In most cases, water with a variety of colors and textures is 

Fig. 5  The WCSA structure and the SCSA strategy
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the only element besides the bridge. Therefore, it is reasonable that a knowledge-driven 
method is sufficient for the position fine-tuning.

In the proposed BBCM, the edge characteristic of bridge-over-water is chosen as the 
key prior knowledge. Edges correspond to the high-frequency components in frequency 
domain and the pixels of large gradient in spatial domain. The edges of bridges often 
appear as spatial parallel lines. Therefore, frequency domain filtering and spatial line 
detection are combined in the BBCM. As shown in Fig. 6, we first convert the horizon-
tal slices to grayscale and sharpen them. Next, they are converted to frequency domain, 
and some low-frequency components are removed. Concretely, we perform Fast Fou-
rier Transform (FFT) and shift the zero-frequency component to the center of the 
spectrum firstly. And then, we remove the low-frequency components from the center 
region of the spectrum, which has an area of Hs

3
×

Ws
3

 . Here, Hs and Ws are the height 
and width of the spectrum, respectively. After that, standard canny edge detection and 
Hough line detection are performed sequentially. To exclude the lines that do not belong 
to the edges of the bridge, the weighted K-means clustering is adopted. The lines from 
bridge edges should have a uniform angle. Slices usually only contain water bodies and 
the bridge, and longer lines are more likely to belong to bridge edges. So, we cluster the 
angles of detected lines, and the lengths of detected lines are used as the weights of cor-
responding angles. The lines of the main class are retained, and the OBB of the bridge is 
accessible according to the retained lines.

3 � Results and discussion
Our experiments were conducted on a high-resolution optical remote sensing image 
dataset proposed for bridge-over-water detection. The resolution of each remote sens-
ing image is in the range of 1–4 m. Each image of the dataset contains at least one bridge 
object, covering railway bridge, highway bridge, road-rail bridge, pedestrian bridge, 
water-carrying bridge, etc. There are about 2000 images and 4000 bridge-over-water 
instances. All instances are annotated by HBBs. In our experiments, training set, valida-
tion set, and test set were divided randomly in the proportion: 8:1:1. All experiments 
were conducted on an NVIDIA RTX3060. Minibatch and epoch were set to 2 and 84 in 
training. Stochastic gradient descent was chosen as the optimizer. The initial learning 

Fig. 6  Pipeline of the BBCM
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rate was set to 0.0025, and learning rate decayed by a factor of 10 at the 48th and 68th 
epochs.

Average precision (AP), recall (Rec), and f1-score (F1S) were used to quantitatively 
evaluate the performance of all deep-learning-based detectors. We obeyed the standard 
COCO [46] evaluation method. For AP and Rec, the superscripts: “s”, “m” and “l” mean 
the corresponding indicators for small, medium and large objects, respectively. It is 
worth noting that all AP indicators were calculated in IoU = .50 : .05 : .95 , which means 
that the IoU threshold ranges from 0.5 to 0.95 with a step size of 0.05. These AP indi-
cators calculated in IoU = .50 : .05 : .95 are the primary metrics in COCO evaluation. 
They are more objective than metrics based on a certain threshold, and a certain thresh-
old would introduce bias in the evaluation. The results of the experiments performed on 
DarkNet-53 and YOLOv3 are shown in Tables 1 and  2. Tables 3 and  4 demonstrate the 
results of the experiments conducted on ResNet-50 and Faster R-CNN with FPN.

3.1 � Effect of modulated deformable convolution on bridge detection performance

We first verify the effectiveness of modulated deformable convolution. It is obvious that 
modulated deformable convolution is able to greatly improve the performance of both 
architectures in bridge-over-water detection. Modulated deformable convolution dra-
matically boosts YOLOv3’s ability to detect large objects, the APl and Recl increase by 
29.6% and 12.6%, respectively. Its effect on Faster R-CNN with FPN is more moderate. 
The APm and Recm increase by 1.8% and 1.7%.

3.2 � Effect of WCSA structure and SCSA strategy on bridge detection performance

On the basis of CBAM and BAM, the proposed WCSA modules are obtained by paral-
lelizing and adding the pathway-weights. We first separately tested the original CBAM 
and BAM paired with Mdconv as benchmarks. Compared with only using Mdconv, 
attention mechanisms paired with Mdconv further improves the detection perfor-
mance especially for small bridges. Subsequently, we performed experiments about 
our WCSA. We visualize the changes of all pathway-weight values in Fig. 7. As shown 
in Fig.  7a and b, we find that all pathway-weight values in YOLOv3 architecture have 
dropped. The weight values of channel attention pathways have dropped more severely. 
According to the proposed SCSA strategy, we only keep the spatial attention branches 
for both SCSA(CBAM) and SCSA(BAM) in YOLOv3. As for Faster R-CNN with FPN 
architecture, we find that WCSA(CBAM)-1, WCSA(CBAM)-2, and the channel atten-
tion pathway of WCSA(CBAM)-3 contribute more to detection performance in Fig. 7c; 
they are retained. According to Fig. 7d, the architecture tends to use the spatial attention 
mechanism instead of the channel attention mechanism in WCSA(BAM). Especially, the 
spatial attention pathway-weight value of WCSA(BAM)-2 increases from 0.5 to 0.702. 
Therefore, only spatial attention branches are reserved in SCSA(BAM).

We further conducted experiments to verify the proposed SCSA strategy. For 
YOLOv3, the combination of Mdconv and SCSA achieved the best results in terms of 
both AP and Rec , SCSA(CBAM) improves APl and Recl by 2% and 1.6%, respectively. 
SCSA(BAM) improves APs and Recs by 1.3% and 0.6%, respectively. For Faster R-CNN 
with FPN, SCSA strategy did not degrade the comprehensive performance, which proves 
that using channel and spatial attention mechanism at every stage of the backbone is 
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(a) (b)

(c) (d)
Fig. 7  The changes of pathway-weights. CA: channel attention; SA: spatial attention; d53: DarkNet-53; r50: 
ResNet-50

Table 1  Comparisons of average precision (AP) on DarkNet-53 and YOLOv3

The significance for bold values is only highlighted on the best performance

Backbones AP (%) AP
s (%) AP

m (%) AP
l (%)

Plain 48.9 36.3 63.3 46.4

Plain+Mdconv 58.7 37.7 64.1 76.0

Plain+Mdconv+CBAM 62.1 43.4 66.1 78.9

Plain+Mdconv+WCSA(CBAM) 61.6 44.2 64.7 78.2

Pain+Mdconv+SCSA(CBAM) 62.8 43.3 66.6 80.9
Plain+Mdconv+BAM 62.1 43.2 66.1 78.7

Plain+Mdconv+WCSA(BAM) 62.1 42.7 66.0 80.2
Plain+Mdconv+SCSA(BAM) 62.6 44.5 66.0 79.2

Table 2  Comparisons of recall (rec) and F1-score (F1S) on DarkNet-53 and YOLOv3

The significance for bold values is only highlighted on the best performance

Backbones Rec(%) Rec
s(%) Rec

m(%) Rec
l(%) F1S(%)

Plain 60.4 43.6 68.8 67.6 51.7

Plain+Mdconv 64.5 45.2 70.2 80.2 58.7

Plain+Mdconv+CBAM 68.2 51.3 72.4 83.1 63.8
Pain+Mdconv+WCSA(CBAM) 68.0 52.3 71.3 83.2 62.5

Plain+Mdconv+SCSA(CBAM) 68.6 51.3 72.4 84.7 62.7

Plain+Mdconv+BAM 68.1 51.7 72.2 82.6 62.4

Plain+Mdconv+WCSA(BAM) 68.1 50.6 72.2 84.2 63.0

Plain+Mdconv+SCSA(BAM) 68.5 52.3 72.3 83.5 63.1
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redundant. On the whole, SCSA strategy simplifies the network structure. It does not 
damage the comprehensive performance and achieves breakthroughs in some indicators.

3.3 � Visualization of bridge detection results

To intuitively demonstrate the validity of the combination of Mdconv and SCSA, partial 
experimental results in Faster R-CNN with FPN architecture are shown in Fig. 8. The 
red rectangles represent the ground truth HBBs, and the predicted results are shown in 
blue rectangles. It is obvious that our method is able to accurately detect bridges over 
water bodies. The missing detection rate and false detection rate are reduced effectively.

Table 3  Comparisons of average precision (AP) on ResNet-50 and Faster R-CNN with FPN

The significance for bold values is only highlighted on the best performance

Backbones AP(%) AP
s(%) AP

m(%) AP
l(%)

Plain 68.4 48.4 72.1 85.8

Plain+Mdconv 69.3 48.6 73.9 87.2

Plain+Mdconv+CBAM 70.1 50.8 73.5 88.6
Plain+Mdconv+WCSA(CBAM) 69.7 51.2 73.6 86.4

Plain+Mdconv+SCSA(CBAM) 70.0 51.0 73.1 88.6
Pain+Mdconv+BAM 69.6 50.6 73.1 87.5

Plain+Mdconv+WCSA(BAM) 69.6 49.7 73.4 87.2

Plain+Mdconv+SCSA(BAM) 69.8 50.3 73.3 87.7

Table 4  Comparisons of recall (rec) and F1-score (F1S) on ResNet-50 and faster R-CNN with FPN

The significance for bold values is only highlighted on the best performance

Backbones Rec(%) Rec
s(%) Rec

m(%) Rec
l(%) F1S(%)

Plain 72.7 54.5 76.9 89.5 71.8

Plain+Mdconv 73.7 54.7 78.6 90.4 72.8

Plain+Mdconv+CBAM 75.0 57.8 78.6 91.6 74.5

Plain+Mdconv+WCSA(CBAM) 74.5 57.8 78.4 89.9 74.7
Plain+Mdconv+SCSA(CBAM) 74.9 58.4 77.9 91.9 74.7
Plain+Mdconv+BAM 74.6 57.2 78.6 90.8 74.5

Plain+Mdconv+WCSA(BAM) 74.2 57.0 78.3 89.9 74.1

Plain+Mdconv+SCSA(BAM) 74.6 57.2 78.4 90.9 74.6

Fig. 8  Examples of test results
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Partial bounding box conversion results of the proposed BBCM are demonstrated in 
Fig. 9. The green rectangles are the OBBs predicted by our BBCM, and the bridge rota-
tion angles relative to the horizontal axis are indicated in degrees. Most of the calculated 
OBBs are high quality. However, it is difficult for our knowledge-driven method to han-
dle a few tiny bridges, as shown in the right part of Fig. 9. The lower resolution provides 
very limited information.

4 � Conclusion
In this paper, we propose a new bridge-over-water detection scheme driven by data and 
prior knowledge. An approach of improving the backbone network and a post-process-
ing for bounding box conversion are presented. Modulated deformable convolution and 
attention mechanisms are introduced to enhance the detection performance of the deep-
learning-based detector. A weighted channel and spatial attention structure is designed to 
analyze the degree of dependence on channel and spatial attention mechanisms within the 
backbone network. It can be concluded from our experiments that channel attention mech-
anism is less important than spatial attention mechanism for DarkNet-53 with Mdconv in 
YOLOv3. The proposed selective channel-spatial attention usage strategy is able to effec-
tively eliminate the redundancy of attention mechanisms while maintaining the compre-
hensive performance of the detector. In addition, there is no need for oriented bounding 
box annotations, and our scheme can predict the precise position of bridge-over-water 
through the proposed post-processing module in most scenarios. The validity and general-
ity of the proposed scheme are verified by our experiments. However, detecting tiny bridges 
in environments with drastic changes in color and surface texture remains a challenge.

Abbreviations
IoU:	� Intersection over union
Mdconv:	� Modulated deformable convolution
HBB:	� Horizontal bounding box
OBB:	� Oriented bounding box
WCSA:	� Weighted channel and spatial attention
SCSA:	� Selective channel-spatial attention
BBCM:	� Bounding box conversion module
CBAM:	� Convolutional block attention module
BAM:	� Bottleneck attention module
AP:	� Average precision
Rec:	� Recall
F1S:	� F1-score

Fig. 9  Examples of bounding box conversion results
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