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1  Introduction
Vital signs detection is of great significance in daily health monitoring and clinical medi-
cal diagnosis. On the one hand, the frequency of the heartbeat reflects the basic health 
status [1, 2]. On the other hand, the rhythm and intensity of the heartbeat are signifi-
cantly beneficial for the diagnosis of heart disease to a great extent [3]. Compared with 
traditionally contact ways such as electrocardiography (ECG) [4], photoplethysmogra-
phy (PPG) [5], and wristband pulse oximeter [6], non-contact heartbeat detection based 
on Doppler radar has superiorities for some special occasions where contact electrodes 
are impractical or inconvenient, such as life detection during earthquake relief [7], infant 
monitoring [8], and fatigue detection [9].
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As a kind of radar sensor, frequency-modulated-continuous-wave radar has been 
widely concerned with remotely monitoring vital signs such as respiration and heart-
beat during the last decades [10–12]. So far, many quadrature demodulation methods 
have been presented one after another due to the widespread application of quadrature 
receiver architecture with I/Q channel demodulation [13]. The small-angle approxi-
mation [14] performs well only by presetting the target position. The complex signal 
demodulation [15] introduces harmonic interference and seriously reduces HR detec-
tion accuracy. Besides, the arctangent demodulation [16] is insensitive to the target 
position and harmonic interference but remains strong nonlinearity and discontinuity. 
Furthermore, the extended differentiate and cross-multiply [17] algorithm overcomes 
the shortcomings of phase wrapping and harmonic interference. Nevertheless, an error 
accumulation problem due to the discrete integration needs to be solved.

One of the challenges for heartbeat detection is accurately estimating HR under the 
strong interference of respiration and its harmonics. This is because the chest-wall dis-
placements due to heartbeat (0.1–0.5  mm) are far smaller than those caused by res-
piration (1–12  mm). A succession of representative methods has been executed for 
cardiopulmonary signal separation and extraction to eliminate respiration interfer-
ence, such as continuous wavelet transform (CWT) [18, 19], ensemble empirical mode 
decomposition (EEMD) [19, 20], singular spectrum analysis [21], and variational mode 
decomposition [22]. Although the effectiveness of these methods has been demon-
strated for the separation and recovery of respiration and heartbeat, there are still some 
shortcomings. On the one hand, the above methods are remarkably susceptible to the 
signal-to-noise ratio. On the other hand, their computational cost is greatly increased. 
Recently, the capability and robustness of recovering the heartbeat signal based on the 
characteristic that matched filters can maximize the output signal-to-noise ratio have 
been substantiated in the presence of large-scale random body movements [23]. Fur-
thermore, multiresolution analysis (MRA) proposed in [24] has been widely applied for 
fault detection [25], radar systems [26], and medical diagnosis [27]. In contrast, the MRA 
performance in vital signs research using Doppler radar is looking forward to being fur-
ther validated.

Another challenge is the insufficient frequency spectrum resolution in short-period 
time windows. Sufficient frequency spectrum resolution can be achieved using long-
period time windows of more than 10 s [20, 28, 29]. Nevertheless, the calculated HRV 
results will be the long-period averages in long-period time windows. In other words, 
the longer the time windows are, the more the losses of heartbeat details will be. There-
fore, for HRV detection in frequency domain analysis, radar data processing in short-
period time windows is required for fast HR acquisition. A time-window-variation 
(TWV) technique [30–32] is introduced to acquire the best time window and improve 
the HR accuracy in short-period time windows. Furthermore, the frequency–time phase 
regression (FTPR) [33, 34] can assess the HR robustly in low signal-to-noise ratio con-
ditions and significantly advance the frequency spectrum resolution. Yet, a solution 
demands to be advised in response to serious dominant frequency estimation deviation 
in short-period time windows.

In this article, we present a fast and accurate approach for non-contact heartbeat 
detection using Doppler radar. We first demodulate the quadrature radar echo signal 
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to calculate the chest-wall displacement signal. Then, the heartbeat signal is accurately 
separated and retrieved from the chest-wall displacement signal. Furthermore, an effec-
tive and robust spectrum estimation method is employed to estimate the real-time HR. 
Finally, human subject experiments in an actual office environment will further verify 
the consistency of HR and BBIs between radar and ECG.

2 � System architecture of Doppler radar
The fundamental principle of vital signs detection using continuous wave Doppler radar 
is to capture the frequency shift caused by the chest-wall displacement due to respira-
tion and heartbeat. The vital signs detection system using 77 GHz millimeter-wave radar 
is shown in Fig.  1. Except for the PC and the subjects, the rest are all integrated into 
the radar development hardware platform to collect radar data containing the chest-wall 
movement information. The radar data are uploaded to the PC through the serial port 
for subsequent algorithm processing. In this paper, the millimeter-wave radar positioned 
in front of the subject at a distance of d0 is employed to extract the chest-wall displace-
ment signal x(t). The radar transmitted signal can be expressed as

where f and ϕ(t) are carrier frequency and initial phase, respectively. Firstly, T(t) is trans-
mitted toward the subject from the transmitter (Tx). Then, the phase of T(t) is modu-
lated by the chest-wall displacement signal x(t) and the reflected signal is generated. The 
reflected signal captured at the radar receiver (Rx) can be depicted as

where c denotes the velocity of radio wave, and � = c f  denotes the wavelength of car-
rier. Generally, the reflected signal can be approximated as a T(t) after phase modula-
tion, with a time delayed of 2d0

/
c . After passing through the low-noise amplifier (LNA) 

at the front end of Rx, the baseband signal B(t) can be represented as

(1)T (t) = cos [2π ft + ϕ(t)]

(2)R(t) ≈ cos

[
2π ft −

4πd0

�
−

4πx(t)

�
+ ϕ

(
t −

2d0

c

)]

Fig. 1  77 GHz millimeter-wave radar system for heartbeat detection
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where θ = 4πd0
/
�+ θ0 is the constant phase related to the initial phase shift θ0 and the 

distance d0 , and the residual phase noise is simplified as �ϕ(t) = ϕ(t)− ϕ
(
t − 2d0

/
c
)
 . 

Subsequently, the baseband signal B(t) is demodulated by the quadrature mixer (I/Q 
Mixer), and the in-phase and quadrature signals are expressed as, respectively,

Finally, the analog baseband signal is converted into a digital signal through A/D. The 
radar digital signal is processed by the DSP hardware module, and the subjects’ chest-
wall movement data are output and uploaded to PC through the serial port.

3 � Proposed method
To realize accurate heartbeat estimation with Doppler radar in a complex environment, a 
concrete implementation scheme of radar data processing is fulfilled, mainly consisting of 
four parts: quadrature signal demodulation, signal preprocessing, cardiopulmonary signal 
separation and extraction, and heartbeat spectrum estimation. The proposed algorithm 
flowchart is presented in Fig. 2, where “Radar Raw Signal” means the data uploaded by the 

(3)B(t) = T (t)− R(t) = cos

[
θ +

4πx(t)

�
+�ϕ(t)

]

(4)I(t) = cos

[
θ +

4πx(t)

�
+�ϕ(t)

]

(5)Q(t) = sin

[
θ +

4πx(t)

�
+�ϕ(t)

]

Fig. 2  Flowchart of the proposed HR estimation framework
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radar development platform to the PC through the serial port. The remaining algorithm 
processing parts in the block diagram are all implemented on the PC side.

3.1 � Quadrature signal demodulation

In this paper, we introduce the arcsine demodulation algorithm [35] into demodulating the 
quadrature signal. Due to discarding the arctangent’s conventional method, phase wrapping 
and error accumulation problems can be avoided for the Doppler radar system with a low 
sampling rate. According to the above principle of vital signs detection, by discretizing the 
parameters t, the demodulated chest-wall displacement signal can be expressed as

where k is the k-th sampled data of radar raw signal, � is the wavelength of Doppler 
radar, �[0] is the initial phase, I[k] and Q[k] are the in-phase and quadrature signal of 
baseband, respectively, and x[n] is the chest-wall displacement signal.

3.2 � Signal preprocessing

Vital signs are completely overwhelmed by environmental noise. Signal preprocessing is 
implemented to remove background noise, eliminate polynomial trends, and enhance vital 
signs.

3.2.1 � Clutter suppression

Assuming that the propagation environment within the radar measurement range is static, 
except for the subject’s chest-wall motion, the constant features of stationary scatterers can 
be captured by averaging the chest-wall displacement data. Then, the background clutter 
can be removed by subtracting the average. In addition, the amplitude instability of the 
transmitting unit caused by thermal noise and time drift will result in a polynomial trend 
of the chest-wall displacement signal [36]. Because of a severe polynomial trend, the low-
frequency components will distort or even drown the dominant frequency. Hence, it is nec-
essary to eliminate the polynomial trend by subtracting the best fit line from the original 
chest-wall displacement.

3.2.2 � Differential enhancement

Differentiating the chest-wall displacement signal can significantly enhance the high-
frequency components in the displacement signal, namely the heartbeat and harmonic 
frequencies. In [37], the heart-to-respiration ratio increased by more than 16 times after 
first-order differential processing, validating the effectiveness of differential enhancement 
for weak heartbeat components. For the chest-wall displacement x̃[n] after clutter suppres-
sion, its first-order differential can be approximately expressed as

(6)x[n] =
�

4π
�[0]+

�

4π

n∑

k=2

I[k − 1]Q[k]− I[k]Q[k − 1]√
I[k − 1]2 + Q[k − 1]2 ·

√
I[k]2 + Q[k]2

(7)x̃′[n] ≈
[
0 x̃2 − x̃1 x̃3 − x̃2 · · · x̃N − x̃N−1

]
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3.3 � Cardiopulmonary signal separation and extraction

The next work is followed by signal preprocessing to accurately separate and 
extract the heartbeat signal under the influential interference of respiration and its 
harmonics.

3.3.1 � MRA algorithm

Multiresolution analysis (MRA) establishes the connection between wavelet trans-
form and digital filter. Based on this theory, a MRA approach based on MODWT is 
employed to decompose the preprocessing chest-wall displacement signal in multiple 
frequency bands and achieve the preliminary separation of heartbeat and respiration 
signals in this paper.

Wavelet transform is essentially a multiscale analysis that is implemented by scale 
and shift operations of a mother wavelet ψ(t) . For any function f (t) ∈ L2(R) , the cen-
tral frequency ψ(t) of the mother wavelet is recorded as f0 ; then, f = f0/a , and the 
time–frequency form of wavelet transform can be depicted as follows

where a is a scale factor corresponding to frequency information, and b is a shift fac-
tor relating to space-time information. By setting the scale parameter a to change the 
shape of the window, it is possible to provide good time resolution for fast events such as 
heartbeat and excellent frequency resolution for slower events such as respiration, which 
is the multiresolution characteristic of the wavelet transform.

However, the continuous wavelet transform basis function ψa,b(t) has a large com-
putational redundancy for fast HR detection. Transformed into discrete wavelet 
transform by discretizing the parameters a and b, the calculation efficiency is exceed-
ingly advanced. Therefore, set a = ai0 , b = jb0a

i
0 , then the discrete wavelet can then be 

expressed as

Set a0 = 2 , b0 = 1 , it can be reduced to binary wavelet, expressed as

Unlike traditional Fourier transform, wavelet transform has wavelet basis functions, 
such as Haar wavelet, Daubechies wavelet, Morlet wavelet, Symlet wavelet, and Coiflet 
wavelet. In this paper, the Coiflet wavelet is chosen as the mother wavelet according to 
the characteristics of the heartbeat signal for three reasons. Firstly, the wavelet func-
tion and scale function of the Coiflet wavelet have good symmetry, which can effectively 
avoid phase distortion. Secondly, the Coiflet wavelet function has a suitable tightly sup-
ported length and decays rapidly outside the effective supporting area. Finally, the shape 
of the Coiflet wavelet is similar to that of the heartbeat signal. The scaling function and 
wavelet function of the Coiflet5 wavelet are shown in Fig. 3, respectively.

(8)WTf (a, b) =

√∣∣∣ ff0
∣∣∣
∫
R f (t)ψ

∗
(

f
f0
(t − b)

)
dt

(9)ψi,j(t) = a
−i/2
0 ψ

(
t − jb0a

i
0

ai0

)
= a

−i/2
0 ψ

(
a−i
0 t − jb0

)

(10)ψi,j(t) = 2−i/2ψ(2−it − j)
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In this paper, the Coiflet wavelet is selected as the mother wavelet of the discrete 
wavelet transform, the vanishing moment order is selected as 5 order, and the decom-
position layers number is 6 layers. The MODWT is implemented on the preprocessed 
chest-wall displacement signal x̃′[n] , and the calculated wavelet transform matrix is 
denoted as WT(L+1)×N  , where L is the number of decomposition layers and N is the 
number of samples of the displacement signal. Then, the Coiflet5 wavelet is used to 
perform MRA on WT(L+1)×N  , and the calculated MRA matrix is denoted as WTmra , 
whose different rows correspond to the MRA results at different scales.

Since HR typically varies from 0.8 to 2 Hz, it is supposed that the frequency range cor-
responds to the range from the k-th line to the l-th line of WTmra . Besides, the energy 
distribution characteristics of wavelet coefficients are closely related to the frequency 
characteristics of the signal. Therefore, weighted reconstruction of different frequency 
bands based on the energy ratio can highlight the heartbeat’s fundamental frequency 
component. The energy of each scale can be depicted as

where i denotes the i-th layer of the wavelet decomposition, i = 1, 2, . . . , L+ 1 . WT(i)
mra[n] 

denotes the n-th wavelet coefficient of the i-th row. E(i) denotes the energy of the i-th 
layer. Then, the energy-weighted reconstructed heartbeat signal can be expressed as

where WT(i)
mra represents the wavelet coefficients matrix of the i-th row, and xmra[n] rep-

resents the chest-wall displacement signal after preliminary separation and reconstruc-
tion using the MRA algorithm.

3.3.2 � TMF algorithm

In the field of signal processing, a matched filter is an optimal filter, and its optimal crite-
rion is the maximum signal-to-noise ratio of the output signal [38]. As for radar systems, 
matched filters have been universally applied in impulse radars, where the transmit-
ted signal is adopted as the template signal [39]. Still, matched filters are rarely used in 
the field of vital signs detection with Doppler radar. Template matched filters, through 

(11)E(i) =

N∑

n=1

[
WT(i)

mra[n]
]2

(12)xmra[n] =

l∑

i=k

(
E(i)

∑l
i=k E

(i)

)
WT(i)

mra

Fig. 3  The function of the Coiflet5 wavelet
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convolution operation between the input signal and the “template signal,” can maxi-
mize the recovery of the signal similar to the template signal hidden in the original input 
signal.

The key to the template matching filter is the selection of the template signal. In [23], 
the low-speed segment signal is directly selected as the template signal. Then, the body 
motion in the template signal is removed by polynomial fitting to obtain the heartbeat 
template signal. The method difficulties lie in the choice of the polynomial fitting order 
and low extraction accuracy. Therefore, a template selection way is proposed to avoid 
respiration interference in this paper. During the experiment, the subject is requested 
to hold his respiration for a few seconds to derive the chest-wall displacement signal 
caused by only the heartbeat as the template signal. Subsequently, a convolution opera-
tion between the energy-reconstructed displacement signal and the “template signal” is 
carried out in the time domain. Then, the signal after template matching filter can be 
calculated by convolving xmra[n] with a conjugated, time-reversed version of the tem-
plate signal h[n], that is,

To intuitively illustrate our proposed separation and extraction algorithm, the discrep-
ancy is investigated by examining the chest-wall displacement waveforms’ visualization 
and corresponding spectra, as illustrated in Fig.  4. The chest-wall displacement wave-
forms of different processing stages are shown in Fig. 4 on the left, and their correspond-
ing spectra are shown in Fig. 4 on the right. Comparing Fig. 4a, b with Fig. 4c, d, it can 
be easily seen that the background clutter is effectively suppressed by the preprocessing, 
and the chest-wall displacement signal due to respiration and heartbeat is significantly 
enhanced. As displayed in Fig. 4e and f, the displacement amplitude decreased approxi-
mately 5 times and the respiration’s frequency fundamental frequency component is 

(13)xh[n] = xmra[n] ∗ h
∗[−n]

Fig. 4  A contrast of the chest-wall displacement waveforms and corresponding spectra
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eliminated, showing that the preliminary separation of respiration and heartbeat is ful-
filled by applying the MRA. Furthermore, as presented in Fig.  4g and h, the displace-
ment signal has a powerful periodicity and its dominant spectrum peak is exceedingly 
significant, demonstrating that the TMF can recover the heartbeat signal concealed in 
the respiration signal.

3.4 � Heartbeat spectrum estimation

The HR detection using Doppler radar is essentially a frequency estimation problem, 
and the frequency resolution determines the HR estimation accuracy. For a short-period 
time window of less than 5s, it is difficult for the traditional FFT to estimate HR quickly 
and accurately because of the lack of frequency resolution.

3.4.1 � FTPR algorithm

Based on the fact that the phase varies linearly with time when the signal exists a domi-
nant frequency [33], the FTPR algorithm converts the traditional frequency domain 
peak detection into a linear regression fitting of the phase and time in the time domain, 
and the slope of the phase is proportional to the dominant frequency of the signal. In 
[33], taking the time window T = 10 s as an example, the frequency resolution of FFT 
is 0.1  Hz, but that of FTPR is 0.01  Hz. Owing to the increased frequency resolution, 
HR detection accuracy is greatly promoted. Additionally, the heartbeat signal clearly has 
a dominant frequency, which is the heartbeat frequency. Consequently, the FTPR is an 
ideal choice. The specific steps of the FTPR for HR detection are as follows 

1.	 The heartbeat signal xh[n] is windowed in the time domain, denoted as xh_win[n] . 
Windowing in the time domain can alleviate the spectral leakage of the signal.

2.	 The FFT is applied to the signal xh_win[n] to acquire its spectrum, and the spectrum 
peak is determined. Preserved the frequency corresponding to the peak and its adja-
cent frequency, the rest of the spectrum is discarded to obtain a reconstructed spec-
trum

3.	 The inverse FFT of the reconstructed spectrum calculates a complex signal xh_rec[n] , 
where the real and imaginary parts are recorded as Ih[n] and Qh[n] , respectively. 
Referring to Eq. 6, the phase ϕh[n] can be calculated by applying demodulation tech-
nology to xh_rec[n] . 

4.	 The desired frequency can be calculated as follows 

3.4.2 � FTPR‑TWV algorithm

However, the dominant peak of the heartbeat spectrum will seriously deviate from the 
true heartbeat frequency in short-period time windows. The reasons are as follows: 
First, there is still residual harmonic noise in the extracted heartbeat signal. Second, 

(14)ϕh[n] =

n∑

k=2

Ih[k − 1]Qh[k]− Ih[k]Qh[k − 1]√
Ih[k − 1]2 + Qh[k − 1]2 ·

√
Ih[k]

2 + Qh[k]
2

(15)fh = Slope[ϕh[n]]/2π
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the true heartbeat frequency is not an integer multiple of the frequency resolution 
due to insufficient frequency resolution. Aiming at the above shortcomings, a novel 
spectrum estimation method combining FTPR with TWV is proposed in this paper.

For a time window of Ts, the frequency resolution �f  is calculated as �f = 1/T  . To 
measure the HR accurately, one of the following conditions or both should be satis-
fied: (a) �f ≪ HR , (b) HR = k�f  , where k is an integer number. Obviously, the detec-
tion accuracy can be satisfied by increasing the length of the time window, but the 
performance of the real-time detection is greatly reduced. In addition, for a periodic 
signal with a frequency of f, if the length of the time window is not an integer multiple 
of the period or in other words, f  = m�f  , the sideband spurs or the harmonics will 
come out after the FFT, and the fundamental frequency energy will be degraded [30]. 
The closer the ratio is to an integer multiple, the smaller the fundamental frequency 
energy leakage is. The specific steps of “Acquire the best time window” are as follows. 

1.	 Select the time window of Ts from the heartbeat signal extracted by cardiopulmo-
nary signal separation and extraction as the original time window

2.	 Sampling in the range of [T −�t,T +�t] at a time interval of S = 1
/
fs , a series of 

time windows with different lengths are generated, and a series of different frequency 
resolutions are obtained, where fs is the sampling frequency, and �t < 0.1T . (The 
HR can be regarded as constant when �t is small.)

3.	 Use FFT to calculate the heartbeat spectrum corresponding to each time window 
and draw all the heartbeat spectrograms in the same spectrogram to obtain the spec-
trum combination. This is the concept of “Spectrum combination.”

4.	 Based on the fundamental frequency spur theory proposed above, by looking for the 
maximum value of the spectrum peak in the “Spectrum combination,” the integer 
multiple of the frequency resolution of the time window corresponding to the maxi-
mum value is closest to the HR. This is the concept of “the best time window” pro-
posed in this paper.

According to above steps, the number of time windows is jointly determined by the 
time interval S and the time variation �t and has nothing to do with the original win-
dow size T. The more time windows there are, the more frequency resolutions are 
obtained, the closer the integer multiple of the frequency resolution of the best time 
window is to the HR, and the higher the detection accuracy. However, the compu-
tational cost will increase significantly, and trade-offs are required in the practical 
applications. In this paper, the time interval as S = 1

/
fs is selected.

An intuitive superiority of the combined spectrum of TWV is visualized in Fig. 5. 
As an example in the time window of T = 3 s and sampling frequency of fs = 32 Hz, a 
series of different time windows are generated. As shown in Fig. 5, the spectrum peak 
of the 3s time window is 0.215, corresponding to a frequency of 1.333 Hz. However, 
the maximum peak in the combined spectrum is 0.223, corresponding to a time win-
dow of 3.179 s and a frequency of 1.255 Hz. Furthermore, because the reference fre-
quency measured by ECG is 1.258 Hz, the time window of 3.179 s is unmistakably the 
best. Based on the above visual analysis, the severe dominant frequency estimation 
deviation can be avoided by introducing the TWV.
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Fig. 5  An intuitive superiority of the combined spectra of TWV

Fig. 6  Flowchart of FTPR-TWV framework
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The FTPR-TWV algorithm is illustrated by conducting visual analysis of the spe-
cific implementation, as manifested in Fig. 6. This flowchart shows more details of the 
“Heartbeat Spectrum Estimation” part in Fig. 2. Following the TMF, the samples of the 
extracted heartbeat signal in the initial time window of T s are selected as input data, 
and a series of different-period time windows are generated by varying the time window 
size at a time interval 1/fs from T −�t to T +�t , where �t < 0.1T  . Afterward, a series 
of the spectra can be acquired by applying FFT to each time window, combining all the 
spectra into a spectrum. By searching for the largest spectral peak in the combined spec-
trum, the time window corresponding to this peak is the best. Finally, the HR, closest to 
the true HR, can be estimated using the FTPR algorithm on the sampled data of the best 
time window.

4 � Experimental results and discussion
To verify the reliability of the heartbeat detection algorithm proposed in this paper, 
many experimental datasets are measured under different experimental conditions. 
Moreover, effective evaluation indicators are adopted to evaluate the performance of the 
proposed method.

4.1 � Experimental conditions and parameters

The experiments are completed in an actual office environment, as exhibited in Fig. 7. 
The HR reference data in this experiment are measured by the traditional contact ECG 
acquisition module (the lower right corner in Fig.  7). ECG electrodes are attached to 
the subject’s chest near the heart, and the sampling frequency is set to 500 Hz. The sub-
ject’s ECG data are uploaded to the PC through serial port 2. The subject’s ECG data 
are uploaded to the PC through serial port 2. IWR1443Boost (the upper right corner in 
Fig. 7) radar platform designed by Texas Instruments is adopted, and the relevant exper-
imental parameters of the Doppler radar are displayed in Table 1. The subjects’ chest-
wall movement data are uploaded to the PC through data serial port 1. The actual office 
environment makes the experimental data closer to the data in the practical application. 

Fig. 7  Photographs of the experimental setup in an actual office environment
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As for each experiment, 2 min of data were recorded from the subject 0.5 m away from 
the Doppler radar, sitting still in front of the radar and breathing normally. The 6 sets of 
experimental data are the measurement results of two male subjects at different times in 
the morning, middle and evening. Each set of data contains a 2 min measurement signal. 
A total of two subjects participate in the vital sign detection experiments.

Besides, the time resolution and frequency resolution need to be compromised in 
practical applications. Generally speaking, the shorter the time window is, the more 
heartbeat details can be presented, yet the lower the frequency resolution will be, the 
worse HR detection accuracy will be. Therefore, to prove the universality of the pro-
posed algorithm for different occasions, two different-period time windows, respec-
tively, 3 s and 10 s, are chosen for the HR detection.

4.2 � Experimental results evaluation

Compared with a band-pass filter (BPF) and EEMD-based algorithm to verify the supe-
riority of the proposed cardiopulmonary signal separation and extraction algorithm, a 
synchronized data segment of 10  s from the sixth set of data is picked to present the 
extracted heartbeat signal clearly, respectively. Additionally, the BPF is set as a 10-order 
Butterworth filter with a passband range from 1 to 3 Hz, and the matched template sig-
nal is decided by holding respiration for 5 s in sitting still.

As illustrated in Fig. 8, the blue line represents the reference ECG signal. The red line 
represents the heartbeat waveform extracted by the incorporation of MRA and TMF. 
The black line represents the heartbeat waveform extracted by the association of BPF 
and EEMD. In contrast to the mode mixing of the heartbeat waveform extracted by BPF 
and EEMD, the heartbeat waveform extracted by MRA and TMF is extremely periodic. 
Besides, the troughs of the waveform extracted by MRA and TMF basically correspond 
to the R peak of the ECG signal, indicating the similarity of the real-time HR between 
radar and ECG.

Based on the superiority of the heartbeat signal extraction algorithm mentioned 
above, comparing the performances of FFT-TWV, FTPR, and FTPR-TWV algorithms 
in HR detection, the development of our proposed spectrum estimation method will 
be evaluated by analyzing the heartbeat parameters of HR and HRV.

Table 1  Experimental parameters

Parameters Value

Bandwidth 4 GHz

Starting frequency 77 GHz

Fast time axis sampling 2 MHz

Slow time axis sampling 32 Hz

Experimental distance 50 cm

Subjects’ activities Sitting still

Measurement duration 2 min

Time window period 3 s

10 s
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4.2.1 � HR analysis

Heart rate (HR) refers to the average number of heartbeats per minute, often used as 
a basic indicator of health monitoring. HR accuracy is defined as the percentage of 
time where HR detected by Doppler radar is within ± 2% the deviation of the refer-
ence HR detected by ECG, which is also used as an HR indicator in this paper.

To visually demonstrate the performance advantages of our proposed algorithm in 
different-period time windows, the HR estimation results of different algorithms at 
different time windows from dataset 6 are exhibited in Fig. 9 as a reference from ECG. 
As shown in Fig. 9a, the HR accuracies of the three algorithms within the deviation 
are about 96%. However, two severe deviation points in the HR curve of the FTPR 
remain to be discovered due to the dominant frequency divergence, and the losses of 
the heartbeat details are grave. As depicted in Fig. 9b, the HR accuracy of the FTPR 
algorithm is only 43.22%, resulting from the severe dominant frequency estimation 
deviation in short-period time windows. Thus, the TWV algorithm is introduced into 
the FTPR algorithm to avoid the problem, and the best time window is determined.

As a result, the HR accuracy of the FTPR-TWV is up to 94.07%. Furthermore, the 
high agreement can be accomplished for the FTPR-TWV algorithm in tracking the 
large HR mutation points and presenting the HR variety, supporting the accuracy and 
timeliness of our proposed algorithm.

In addition, an error evaluation index is utilized: The root-mean-squared error 
(RMSE) is calculated as

Fig. 8  An example showing the comparison of extracted heartbeat signals by different algorithms
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where Nbpm denotes the calculated HR number in the observation, BPMest(i) denotes 
the i-th estimated HR from Doppler radar, and BPMref (i) denotes the i-th estimated HR 
from ECG, in units of beats per minute (BPM).

Taking the estimated HR results in Table 2 into consideration, we can further assess 
the achievements of different algorithms. Table  2 is divided into two sub-tables of 
basic time window T = 10 s and T = 3 s. Each sub-table has 6 groups of experimen-
tal data, each group of data corresponds to the estimation results of three different 
algorithms, and each row corresponds to the results of different indicators of the 

(16)RMSE =

√√√√√ 1

Nbpm

Nbpm∑

i=1

[BPMest(i)− BPMref (i)]
2

Fig. 9  An example showing the comparison of HR estimated of different algorithms from dataset 6
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algorithm. As shown in Table 2(a), the HR accuracies of the three algorithms are all 
over 92.79%, especially the average HR accuracy of FTPR-TWV is 99.70%, which is 
in high agreement with the reference value. As illustrated in Table 2(b), the average 
HR accuracies of FFT-TWV, FTPR, and FTPR-TWV are 82.20%, 40.68%, and 92.09%, 
respectively. The HR accuracy of FTPR-TWV is significantly higher than the compari-
son algorithm. In addition, the average RMSE of the FTPR-TWV is 0.90 BPM, which 

Table 2  HR estimation results analysis

Dataset Algorithm Avg.HR (BPM) HR accuracy (%) RMSE (BPM)

Radar ECG

(a) T = 10 s

 1 FFT-TWV 74.95 74.84 100.00 0.71

FTPR 74.88 92.79 0.98

FTPR-TWV 74.80 100.00 0.50

 2 FFT-TWV 74.65 74.73 99.10 0.57

FTPR 74.46 99.10 0.81

FTPR-TWV 74.73 100.00 0.35

 3 FFT-TWV 72.15 72.21 100.00 0.42

FTPR 72.10 100.00 0.48

FTPR-TWV 72.19 100.00 0.49

 4 FFT-TWV 75.15 75.08 99.10 0.69

FTPR 75.27 93.69 1.04

FTPR-TWV 75.09 100.00 0.57

 5 FFT-TWV 80.81 80.94 100.00 0.56

FTPR 80.78 100.00 0.95

FTPR-TWV 80.84 100.00 0.47

 6 FFT-TWV 85.61 85.68 98.20 0.54

FTPR 85.11 96.40 1.22

FTPR-TWV 85.64 98.20 0.67

(b) T = 3 s

 1 FFT-TWV 74.84 74.79 86.44 1.01

FTPR 76.65 37.29 2.06

FTPR-TWV 74.78 89.83 0.99

 2 FFT-TWV 74.70 74.72 84.75 0.99

FTPR 76.56 33.90 2.03

FTPR-TWV 74.65 92.37 0.89

 3 FFT-TWV 72.99 72.17 55.09 1.76

FTPR 74.31 12.71 2.52

FTPR-TWV 72.16 93.22 0.80

 4 FFT-TWV 75.10 75.10 86.44 1.03

FTPR 76.88 32.20 1.98

FTPR-TWV 75.11 88.98 0.98

 5 FFT-TWV 80.85 80.90 91.53 0.98

FTPR 80.56 84.75 1.06

FTPR-TWV 80.87 94.07 0.78

 6 FFT-TWV 85.62 85.55 88.98 1.05

FTPR 83.84 43.22 2.15

FTPR-TWV 85.55 94.07 0.95
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is less than that of the FFT-TWV, further verifying that more details of the short-
period HR variety can be presented (Table 3).

Furthermore, the relative error mean error is used as an indicator to compare the algo-
rithm performances in recent years.

4.2.2 � HRV analysis

Heart rate variability (HRV) refers to the time interval between consecutive heartbeats, 
revealing the regularity of each heartbeat. HRV analysis is of great significance in the diag-
nosis and medicine of heart diseases. Different from determining the BBIs by detecting 
the time interval of adjacent heartbeats in the time domain, the HR detection method by 
searching for the interested frequency in the frequency domain is applied in this paper and 
[31], where the BBIs can be calculated by the HR estimation value BPM, in units of beats 
per minute.

The mean relative error (MRE) is defined as

The evaluation indicators of HRV analysis, including the standard deviation of normal-
to-normal intervals (SDNN) and the root-mean-square successive difference of intervals 
(RMSSD), are defined as

(17)Error =
1

N

N∑

n=1

|HRref −HRest|

HRref

(18)BBI(i) =
60

BPM(i)
× 1000, i = 1, 2, . . . ,Nbbi

(19)MRE =
1

Nbbi

Nbbi∑

i=1

|BBIest(i)− BBIref (i)|

BBI ref
(i)

(20)SDNN =

����� 1

Nbbi

Nbbi�

i=1


BBI(i)− 1

Nbbi

Nbbi�

i=1

BBI(i)



2

Table 3  Comparison of the HR measurements with different algorithms

Algorithms Published year Length of time 
windows

Error (%)

[30] FFT-TWV 2016 2–5 s 3.40

[31] IZA-SLMS with TWV 2019 8 s 4.20

[32] WT-based data-length-variation 2017 2–5 s 3.00

[33] FTPR 2018 10 s 9.50

[40] the scaling function of WT 2019 – 3.90

[41] SE 2021 – 1.60

This work FTPR-TWV – 3 s 0.03
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where Nbbi is the number of successive heartbeat intervals and represents the time inter-
val between successive heartbeats. In addition, the Bland–Altman analysis [42] is often 
used in medical clinical research to assess the consistency of different parameters. This 
method is also adopted to evaluate the agreement of the BBIs from radar and ECG in 
this paper, where the Bias denotes the average difference, and SD denotes the standard 
deviation of the difference. The lower and upper 95% limits of agreement (95% LoA) are 
defined as

The results of HRV analysis are visualized in Table 4. As shown in Table 4(a), the MRE 
of the FTPR-TWV ranges from 0.36 to 0.64%, and the bias and 95% limits of consistency 
are small, showing high agreement. In addition, the small RMSSD indicates that the BBIs 
have small fluctuations, implying the losses of the HR details. As presented in Table 4(b), 
the averages of the MRE by the algorithms of FFT-TWV, FTPR, and FTPR-TWV are 
1.17%, 2.28%, and 0.91%, respectively. The mean differences of the HRV evaluation indi-
cators between those algorithms and ECG are SDNNs (1.86 ms, 3.77 ms, 0.88 ms), and 
RMSSDs (4.05  ms, 5.35  ms, 2.84  ms), respectively. Compared with the performances 
by FTPR, the above errors by FTPR-TWV considerably decrease due to introduction 
of TWV into FTPR. Moreover, all bias magnitudes by FTPR-TWV are under 0.80 ms, 
further verifying the accuracy and timeliness of our proposed method in short-period 
time windows.

4.3 � Discussion

As a result, accurate heartbeat estimation results have been implemented in short-period 
time windows of 3 s by using our proposed heartbeat detection algorithm. This method 
solves serious dominant frequency estimation deviation and insufficient frequency spec-
trum resolution in short-period time window. However, there are still many limitations 
as well as research topics to be further explored, mainly summarized as follows 

1.	 The experimental test scenario in this paper is that the subject’s chest is located 
directly in front of the radar for monitoring, which is relatively ideal and has limita-
tions for wide applications in different fields. In practical applications, the human 
body may not be located at a certain angle or even back to the radar, resulting in a 
lower energy of the measured vital sign. Therefore, enhancement algorithm for vital 
sign components should be further studied.

2.	 Research on the methods of the heartbeat signal extraction in the presence of large 
body movements. The chest-wall motion caused by the heartbeat and respiration is 
much smaller than the large body movements, so it is difficult to extract vital signs 
from the radar echo signal in the presence of large body movements. As for heart-

(21)RMSSD =

√√√√ 1

Nbbi − 1

Nbbi∑

i=2

[BBI(i)− BBI(i − 1)]2

(22)
LoA_L = Bias− 1.96SD

LoA_U = Bias+ 1.96SD
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beat detection in the presence of large body movements, more advanced algorithms 
will be required to exclude abnormal parameter values in the radar echo signal.

3.	 Research on the time domain characteristics of vital signs. The frequency domain 
analysis of vital signs can only obtain information such as heart rate and respiration 
rate in a specific time window. Nevertheless, as for clinical medical diagnosis, the 
time domain information of vital signs at each moment should be observed, which is 
a major focus of future research work.

Table 4  HRV estimation results analysis

Dataset Algorithm MRE (%) SDNN (ms) RMSSD (ms) Bland–Altman (ms)

Radar ECG Radar ECG Bias LoA_L LoA_U

(a) T = 10 s

 1 FFT-TWV 0.85 11.03 7.52 5.03 2.08 − 1.17 − 16.04 13.70

FTPR 1.18 14.54 6.13 − 0.27 − 20.97 20.42

FTPR-TWV 0.50 8.69 1.93 0.47 − 10.04 10.99

 2 FFT-TWV 0.59 9.71 7.86 5.24 2.48 0.86 − 10.94 12.67

FTPR 1.01 13.87 4.66 3.02 − 13.12 19.16

FTPR-TWV 0.36 8.21 1.89 − 0.03 − 7.30 7.24

 3 FFT-TWV 0.47 11.09 10.81 2.58 2.14 0.65 − 8.79 10.09

FTPR 0.52 7.27 1.27 1.14 − 9.52 11.80

FTPR-TWV 0.55 12.12 2.21 0.24 − 10.92 11.41

 4 FFT-TWV 0.77 10.45 6.67 4.21 1.72 − 0.70 − 15.15 13.75

FTPR 1.28 14.88 4.07 − 1.82 − 23.35 19.71

FTPR-TWV 0.64 8.98 2.51 − 0.10 − 12.06 11.86

 5 FFT-TWV 0.57 8.64 5.62 4.00 1.39 1.23 − 8.55 11.01

FTPR 1.10 12.95 5.04 1.64 − 15.21 18.50

FTPR-TWV 0.45 8.17 2.02 1.01 − 7.30 9.33

 6 FFT-TWV 0.42 15.00 15.20 4.08 3.16 0.52 − 7.60 8.64

FTPR 0.72 12.81 8.45 4.60 − 11.86 21.05

FTPR-TWV 0.58 16.56 4.67 0.38 − 9.87 10.64

(b) T = 3 s

 1 FFT-TWV 1.08 10.26 11.21 10.39 9.35 − 0.55 − 21.92 20.81

FTPR 2.44 8.37 5.81 − 19.50 − 38.33 − 0.67

FTPR-TWV 1.02 11.04 6.04 0.10 − 20.96 21.17

 2 FFT-TWV 0.99 10.19 11.21 10.57 9.34 0.22 − 20.72 21.16

FTPR 2.41 6.54 4.68 − 19.38 − 37.65 − 1.10

FTPR-TWV 0.93 9.27 4.08 0.72 − 18.06 19.51

 3 FFT-TWV 1.93 18.16 13.33 20.02 7.30 − 9.16 − 46.37 28.04

FTPR 3.18 19.12 17.45 − 23.74 − 54.48 7.00

FTPR-TWV 0.88 12.71 5.97 0.06 − 18.20 18.31

 4 FFT-TWV 1.05 10.42 9.98 9.50 8.63 − 0.03 − 21.80 21.74

FTPR 2.35 6.78 4.97 − 18.61 − 36.65 − 0.56

FTPR-TWV 1.00 9.99 5.83 − 0.09 − 20.83 20.66

 5 FFT-TWV 0.96 11.19 8.07 10.11 4.84 0.53 − 17.19 18.25

FTPR 1.02 10.50 10.27 3.18 − 15.26 21.62

FTPR-TWV 0.76 10.09 6.81 0.26 − 14.00 14.53

 6 FFT-TWV 1.00 19.16 18.39 9.79 6.63 − 0.54 − 17.72 16.64

FTPR 2.28 22.08 11.28 14.54 − 5.10 34.18

FTPR-TWV 0.87 18.91 9.00 0.02 -15.21 15.26
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5 � Conclusion
In summary, the accuracy and timeliness of our proposed heartbeat detection method 
using Doppler radar are confirmed through theoretical analysis and human experiments. 
By employing the MRA and TMF methods, we can faithfully accomplish the cardio-
pulmonary signal separation and the hidden heartbeat signal recovery. Furthermore, a 
novel spectrum estimation approach can provide fast and accurate HR estimation and 
solve serious dominant frequency estimation deviation and insufficient frequency spec-
trum resolution in short-period time windows. Experimental results in short-period 
time windows of 3s demonstrate high accuracy and small average errors, including the 
HR detection accuracy of up to 92.09%, the BBIs’ MRE of less than 1.05%, and the bias 
magnitudes of under 0.80  ms, verifying the presence of more HR characteristics and 
higher consistency between the radar and ECG. Therefore, the benefit of the accuracy 
and timeliness of our proposed method could be anticipated for non-contact vital signs 
detection research.
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