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Abstract 

In 5G communications, the acquisition of accurate channel state information (CSI) 
is of great importance to the hybrid beamforming of millimeter wave (mmWave) 
massive multiple-input multiple-output (MIMO) system. In classical mmWave MIMO 
channel estimation methods, the exploitation of inherent sparse or low-rank struc-
tures has demonstrated to improve the performance. However, most high-accurate 
CSI estimators incur a high computational complexity and require the prior channel 
information, which hence present the major challenges in the practical deployment. 
In this work, we leverage machine learning to design the low-complexity and high-
performance channel estimator. To be specific, we first formulate the CSI estimation, 
in the case of sparse structure, as one classical least absolute shrinkage and selection 
operator problem. In order to reduce the time complexity of existing compressed sens-
ing (CS) methods, we then approximate the original optimization problem to another 
one, by imposing the other low-rank constraint that was barely considered by CS. 
We thus solve this new approximated problem and attain the near-optimal solu-
tion of the original problem. One new method excludes any prior channel informa-
tion, and greatly improves the estimation performance, which only incurs a low time 
complexity. Simulation results demonstrate the superiority of our proposed method 
both in the estimation accuracy and time complexity.

Keywords:  Massive MIMO, Millimeter wave, Low rank, Sparse, Machine learning, 
Channel estimation

1  Introduction
Millimeter wave (mmWave) communication technology has attracted much attention in 
5G cellular systems, and it provides a wide range of spectrum with multiple access mul-
tiplexing technology that can greatly improve channel capacity, which is undoubtedly 
attractive in tight spectrum resources. Besides, the reliability of mmWave communica-
tions system is extremely high, and it can provide a stable transmission channel [1–7]. 
To compensate for the severe path losses in millimeter wave signal propagation, mil-
limeter wave communication systems are usually equipped with massive multiple-input 
multiple-output (MIMO) antenna arrays [8, 9]. For such mmWave massive MIMO sys-
tems, the superior hybrid analog/digital beamforming performance necessitates reliable 
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channel state information (CSI), while is difficult to acquire due to the large number of 
unknown channel parameters [10].

By exploiting of the inherent sparse or rank restricted property of mmWave’s mas-
sive MIMO channel, a number of algorithms have been developed to improve CSI esti-
mation performance [11]. Among them, the least squares (LS) algorithm and the least 
mean squares error (MMSE) algorithm are widely adopted. The least squares method 
estimation accuracy is low, while it is easy to implement; another MMSE algorithms per-
form better, but require a lot of computational overhead [12–14]. Recently, some new 
mmWave CSI estimation schemes have been proposed to tradeoff the computational 
complexity and estimation accuracy. Specifically, Reference [15] proposes an iterative 
singular value projection (SVP) method to improve CSI estimation performance by uti-
lizing the low-rank structure of a massive MIMO channel. Moreover, Ref [16] exploits 
the well-known Fast Iterative Shrinkage Threshold Algorithm (FISTA) to reduce the 
complexity of CSI estimation based on channel sparsity, while it may lead to the deterio-
rated performance due to grid mismatch.

As one important theory in machine learning (ML) field, compression sensing (CS) 
has been widely used in millimeter wave CSI estimation due to the inherent sparse prop-
erty of mmWave channel. The ref [17] proposes an effective mmWave large-scale MIMO 
system open-loop channel estimator to achieve superior estimation performance, by 
the orthogonal matching pursuit (OMP) algorithm employing a redundant dictionary 
consisting of array response vectors. However, this OMP-based approach requires prior 
channel sparsity and is often difficult to obtain. Furthermore, another two-stage com-
pressive sensing (TSSR) method developed in [18] is aimed to exploit sparse and low-
rank characteristics in two consecutive phases, respectively, but the error in this scheme 
is largely affected by the ratio of the number of conducts to the transmitted signal. The 
complexity of channel estimation and the overhead of channel feedback will be unbear-
able when the pilot signal is too long. Ref [19] develops one novel joint CSI estimation 
and feedback (JCEF) CSIT acquisition scheme by exploiting the random matrix approx-
imation technique. This scheme can effectively reduce the complexity of calculations. 
Likewise, a low-rank structure of the channel covariance matrix is proposed to reduce 
the training overhead in [20], which is more robust than the traditional compressive 
perception method. However this method only works with OFDM-based systems. Ref 
[21] proposes a channel estimation scheme that uses the sparsity of the angular domain 
structure of the channel to reduce the training overhead, which is more efficient than 
some previous channel estimation schemes, where only the line of sight (LOS) compo-
nent was estimated.

In this work, by leveraging the CS technique in machine learning, we propose one novel 
CSI estimator based on the joint sparse and low-rank structure of mmWave massive MIMO 
channel, which greatly improve the estimation performance and meanwhile reduces the 
time complexity and pilot overhead. Specifically, the mmWave channel estimation pro-
cess is first modeled as one non-convex problem, and then we theoretically approximate 
this non-convex problem as one classical least absolute shrinkage and selection opera-
tor (LASSO) problem. To solve this LASSO problem, we develop one novel CSI estima-
tion algorithm including two stages to accurately estimate the CSI matrix. In the first stage, 
our new method exploits the CS technique to estimate one roughly CSI estimation result. 
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Then, on this basis, we develop one novel low-rank matrix completion algorithm to solve 
the constructed LASSO problem, with which we can accurately recover the channel matrix. 
As validated by the numerical results, our proposed method achieves the much higher CSI 
estimation performance than most existing algorithms, while the computational complexity 
and pilot overhead are low. The main contributions of this paper is summarized as follows.

•	 We model the described mmWave channel estimation process as a non-convex prob-
lem and approximate this non-convex problem as one classical LASSO problem, based 
on the inherent sparse and low-rank properties of mmWave massive MIMO channels, 
which has rarely been considered.

•	 We develop one novel CSI estimation scheme to solve this LASSO problem without 
prior channel information, by leveraging the CS technique in machine learning, which 
occurs much less complexity and attains higher estimation performance. Theoretically, 
we analyze the time complexity of our new method. It is proved that the algorithm can 
greatly improve the estimation accuracy even with only low time complexity.

•	 We provide the detailed numerical simulations of our proposed CSI estimator and then 
compare it with most existing algorithms. As illustrated by the simulation results, our 
CSI estimator greatly reduce the computational complexity and plot training overhead, 
and almost attain the same CSI estimation accuracy as classical OMP method. These 
prove the superiority of our proposed method.

Notation: Lower-case and upper-case boldface letters denote vectors and matrices, respec-
tively; (·)T and (·)H denote the transpose and conjugate transpose of a matrix, respectively; 
(·)∗ denotes the conjugate of a matrix, that is, only the conjugation of all matrix elements; 
rank(H ) denotes the rank of H ; vec(H ) and unvec(H ) denote the vectorization and unvec-
torization of matrix H , respectively; vecd(H) denotes is an N-dimensional vector consisting 
of the diagonal entries of H(the n-th entry of vecd(H) is given by H(n, n) ); � · �p is the lp
-norm.

2 � System model
In this work, we consider one hybrid analog-digital mmWave massive MIMO communica-
tion system, which is equipped with Nt transmitting antennas at the base station (BS) and 
Nr receiving antennas at the mobile station (MS) respectively (as seen in Fig.1). Without 
loss of generality, we adopt the well-accept geometric channel model in mmWave massive 
MIMO system, which is given by [15, 22]:

where β is the average path-loss between; K denotes the number of scattering 
paths; αk is the complex path gain of k-th path; θk ,ϕk ∈ [0, 2π ] are the direction of 
arrival or departure (DOA/DOD) of the k-th path [22]. ar(θk), at(ϕk) are the array 

response vector and denoted as ar(θk) = 1√
Nr
[1, ej 2πd� sin(θk ), . . . , ej

2πd
�

(Nr−1) sin(θk )]T  , 

at(ϕk) = 1√
Nt
[1, ej 2πd� sin(ϕk ), . . . , ej

2πd
�

(Nt−1) sin(ϕk )]T  , d is the distance between  

neighboring antenna elements, � is the signal wavelength. As seen, the channel 

(1)H = NrNt

β

K

k=1

αkar(θk)a
H
t (ϕk),
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matrix can be written in a more compact form as H � Ar�AH
t  , where 

Ar = [ar(θ1), . . . , ar(θK )] , At = [at(ϕ1), . . . , at(ϕK )] ; � =
√

NrNt
β

diag(α1, . . . ,αK).

In this hybrid analog-digital mmWave massive MIMO communication system, the BS 
transmits the pilot symbol matrix X with size of CNs×T ( Ns is the length of data streams, 
T denotes pilot length.), and then the received signal matrix Y at MS is give as [22] :

 Here, C � CRFCBB ∈ C
Nr×Ns denotes the combining matrix consisting of the analog 

combiners and digital combiners; F � FRFFBB ∈ C
Nt×Ns is the precoding matrix; 

N ∈ C
Ns×T is the independent and identically distributed additive white Gaussian noise, 

with its elements having zero mean and the variance σ 2
n  . Furthermore, we vectorize the 

received signal matrix Y in (2) as the following [17], i.e.,

where D � FX ∈ C
Nt×T ; b =

√

NrNt
β

[α1, . . . ,αK ]T ∈ C
K×1 ; h = vec(H) =

(

A∗
t ◦ Ar

)

b ; 

n = vec(N) ; ⊗ is the Kronecker product; ◦ is the Khatri-Rao product. Note that, the 
number of propagation paths K is usually much less than the number of transmitting/
receiving antennas Nr ,Nt in mmWave massive MIMO radar system, i.e., 
K ≪ min(Nr ,Nt) . In such a case, we can seen that rank(H) ≤ K ≪ min (Nr ,Nt) , i.e., 
the channel matrix is serious rank-restricted.

3 � Proposed channel estimation scheme
In this section, we develop one low-complexity channel estimation scheme to greatly 
improve the CSI estimation performance of mmWave massive MIMO system, which 
fully utilizes the inherent rank-restricted and sparse structure yet without needing any 
prior knowledge of the channel information (including the channel sparsity and rank),

To achieve our purpose, we first approximate the received signal vector y as following 
[18], i.e.,

(2)Y =CHAr�AH
t FX +N.

(3)y = vec(Y) =
(

DT ⊗ CH
)

(

A∗
t ◦ Ar

)

b+ n,

(4)y =
(

DT ⊗ CH
)

Aau + n,

Fig. 1  The hybrid analog-digital mmWave massive MIMO communication system
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where Aa ∈ C
NrNt×M2 denotes one dictionary matrix whose column is composed by 

a∗t (
⌢
ϕ i)⊗ ar(

⌢

θ j) , and 
⌢
ϕ i = 2π i/M, i = 0, 1, · · · ,M − 1 , 

⌢

θ j = 2π j/M, j = 0, 1, · · · ,M − 1 
are the angles uniform grid; u ∈ C

M2×1 should be one sparse vector containing the path 
parameters and Aau ≈ h . Note that, this approximation error is low according to the 
classical reference [23], and the approximation error would be degraded as the size of 
grid increasing. In such a case, by exploiting the sparse structure of constructed vec-
tor u and the low-rank property of channel matrix H , the CSI estimation process of 
mmWave massive MIMO system can be exactly modeled as following non-convex 
problem, i.e.,

where R denotes the sparsity of the vector u1, i.e., R = �u�1 ; Sa � DT ⊗ CH ; 
rank(H) = rank(unvec(Aau)) . Note that, it is difficult to known the prior sparsity 
information R of u in the mmWave massive MIMO channel estimation process. In such 
a case, directly estimating u from the above-constructed non-convex problem (5) is hard 
to accomplish. According to [24], we approximate the original problem’s estimate of the 
sparse vector u to the classical LASSO problem (6), as seen in the following:

where � denotes the regularization parameter. Therefore, the near-optimal solution of 
the original problem (5) can be obtained by solving another formulated problem (6).

In order to solve the above problem (6), we develop a novel CSI estimation algo-
rithm including two separate stage, by fully exploiting the joint low-rank and sparse 
structure, as seen in the Algorithm  1. In the first stage, our new CSI estimation 
scheme exploits the compression sensing technique to recover one sparse vector u1 
from (6) without considering the non-convex constraint. Then, we further construct 
the rough channel estimation result H0 via Aau1 . In the second stage, based on Gra-
dient descent (GD) framework and Singular Value Hard Thresholding (SVHT), we 
develop a new algorithm to accurately estimate the CSI matrix Ĥ , which fully exploits 
the inherent rank-restricted property of mmWave massive MIMO channel and the 
rough channel estimation H0 . Comparing to other existing methods, our method 
can achieve the much higher CSI estimation accuracy, yet it only incurs low time 
complexity.

Specifically, in the first stage, we simply estimate one sparse vector u1 from the prob-
lem (6) yet without considering the rank-restricted constrict, which is denoted as prob-
lem (P1) , i.e.,

(5)min
∥

∥y − SaAau
∥

∥

2

2
s.t. sparsity(u) = R,rank(unvec(Aau)) ≤ K ,

(6)min
∥

∥y−SaAau
∥

∥

2

2
+ ��u�1

s.t. rank(unvec(Aau)) ≤ K ,

(7)P1 : arg min
u1

∥

∥y−SaAau1
∥

∥

2

2
+ ��u1�1.

1  Note that, R can be equal to the channel rank K when the DODs and DOAs of propagation paths are respectively con-
tained by 

⌢
ϕ i = 2π i/M , 

⌢

θ j = 2π j/M , i, j = 0, 1, . . . ,M− 1 . However, such ideal case is almost impossible in real mmWave 
massive MIMO communication systems.
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Here, ( P1 ) can be solved by the low-complexity FISTA compression sensing algorithm 
[16]. Based on the estimated sparse vector u1 , we can calculate one rough CSI estimation 
matrix H0 � unvec(Aau1) . Note that, H0 is usually one full-rank channel matrix.

In the second stage, based on the classical gradient descent (GD) framework and Sin-
gular Value Hard Thresholding (SVHT) techniques, we further develop one novel algo-
rithm to solve the problem (6) with the initial estimation result H0 , with which the 
accurately CSI estimation matrix is acquired. As demonstrated, it is noted that the problem 
(6) can be approximate as another problem ( P2 ) when providing the initial sparse result 
H0 � unvec(Aau1) , i.e.,

To be specifical, our new method first calculates the ĥdt � ĥt−1 + �t∇f
(

ĥt−1

)

  

according to the gradient descent framework at iteration t, where 
�t ,∇f

(

ĥt−1

)

� vec(C∗CT Ĥt−1DDT − C∗YDT ) are the step length and gradient respec-

tively. Then, we further restrict the rank of Ĥd
t = unvec(ĥdt ) by hard thresholding its sin-

gular values [25], which is given as:

where ηd(si; τ) denotes the hard thresholding nonlinearity and ηd(si; τ) =
{

si, si ≥ τ

0, si < τ
 ; 

ui, vi, si are the i-th left and right singular vectors and value of Ĥd
t  ; τ � 2.858 · smed 

denotes one specified threshold and smed is the median singular value of the matrix Ĥd
t  . 

As demonstrated by the ref [26], the parameter of 2.858 is determined according to the 
size of received signal matrix Y and it is independent on the noise level. Finally, at the 
end iteration tend , we can obtain the CSI estimation result Ĥ = unvec(ĥtend).

(8)P2 : arg min
ĥ

∥

∥

∥
y−Saĥ

∥

∥

∥

2

2
; s.t. rank(Ĥ) ≤ K .

(9)Ĥt =
∑min(Nr ,Nt )

i=1
ηd(si; τ)uivHi ,
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4 � Complexity analysis
In the following, we theoretically analyze the computational complexity of our pro-
posed CSI estimator. According to the Algorithm 1, we first acquire the sparse vector 
u1 by leveraging the FISTA algorithm to solve problem P1 , which incurs the complex-
ity O(NsTM

2tf ) ( tf  denotes the iterations of the FISTA algorithm) according to ref [16]. 
Then, computing the initial result H1 requires the complexity O(NsTM

2) . Next, we fur-
ther exploit the developed novel algorithm to solve our constructed problem P2 , based 
on the inherent rank-restricted property and initial result H1 , which requires the compu-
tational complexity O(N 2

r Ns + N 2
t T + NrNsT + NtNsT + tend(N

2
r Nt + N 2

t Nr)) , where 
tend denotes the maximal iteration of our proposed method. Without loss of generality, 
it is noted that Ns ∼ Nt ,T ∼ Nt , thus the overall computational complexity of our pro-
posed method can be further given as:

Note that, the complexity of solving problem P1 by FISTA algorithm [16] in the first 
stage is much higher than the time complexity induced in the second stage, due to 
M ≫ max(Nr ,Nt).

5 � Numerical performance
In this section, we numerically evaluate the normalized mean squared error (NMSE) 
performance of our proposed scheme in the mmWave massive MIMO system, and then 
compare it with other existing methods. Here, the NMSE between the estimated and 
original CSI matrix is defined as NMSE� E{�Ĥ−H�2F/�H�2F } . In our simulations, all 
the simulation parameters are set as follows: Nr = Nt = 64 ; Ns = 60.

As illustrated in Fig. 2, comparing to some existing CSI estimation algorithms which 
do not need the prior sparsity or rank information (e.g., the TSSR [18] and FISTA [16]), 
our method would greatly improve the estimation accuracy. Moreover, from Fig. 2, we 

O
(

N 2
r Nt + N 3

t + tend

(

N 2
r Nt + N 2

t Nr

)

+ tf N
2
t M

2
)
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Fig. 2  The channel estimation performance of different CSI estimators
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note that the CSI estimation performance of our proposed method is close to the classi-
cal OMP method which requires the prior sparsity information.

Then, we further evaluate the time complexity of our proposed CSI estimation algo-
rithm, as seen in Fig. 3. According to Fig. 3, the computational complexity of our pro-
posed channel estimation method is much lower than OMP-based method, and it is 
almost the same as that of other existing algorithms, i.e., the TSSR and FISTA method.

Moreover, we evaluate the performance of our proposed algorithm under different 
numbers of propagation paths. As shown in Fig. 4, our method performs roughly the 
same on different numbers of propagation paths, without much difference. In the fol-
lowing simulation, we consider the performance of different CSI with different pilot 
lengths, where SNR = 5 dB. Fig.  5 shows the detection performance of several CSI 
estimation methods as the number of pilots increases. It can be seen that with the 
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Fig. 3  Time complexity of different CSI estimation algorithms
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Fig. 4  NMSE performance comparison for different number of propagation paths
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increase in the number of pilots, the performance of the algorithm we propose is bet-
ter than other algorithms, which is similar to the performance of the classic OMP 
algorithm. Our algorithm can effectively reduce the overhead required for channel 
estimation training

6 � Conclusion
In this work, based on the inherent sparse and low-rank structure of mmWave mas-
sive MIMO channel, we develop one novel CSI estimation scheme to greatly improve 
performance meanwhile reducing the computational complexity by leveraging the CS 
technique in machine learning, which does not require the prior sparsity and rank 
information of channel. As demonstrated by the numerical simulations, the CSI esti-
mation performance of our new method is much higher than most existing meth-
ods, and it is even close to the OMP method. Furthermore, comparing with other 
methods, the computational complexity and the channel training overhead of our 
CSI estimator are greatly reduced, which is significantly meaningful for the practical 
deployment in mmWave massive MIMO system.

Appendix
According to Eq. (11) in the ref [17], H � Ar�AH

t  can be rewritten as a vector form:

and according to Eq. (9) in the ref [22], we can get

then, vectorizing (11) yields

(10)h = vec(H) =
(

A∗
t ◦ Ar

)

· vecd(�)

(11)Y =CHAr�AH
t FX +N = CHHFX +N.
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Fig. 5  NMSE comparison of different CSI estimation algorithms with the number of pilot symbols
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where D � FX ∈ C
Nt×T ; vecd(�) = b =

√

NrNt
β

[α1, · · · ,αK ]T ∈ C
K×1 ; n = vec(N) . So 

derivation can get Eq. (3).
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