Skip to content

Advertisement

  • Research Article
  • Open Access

Broadband Beamspace DOA Estimation: Frequency-Domain and Time-Domain Processing Approaches

EURASIP Journal on Advances in Signal Processing20062007:016907

https://doi.org/10.1155/2007/16907

  • Received: 1 November 2005
  • Accepted: 12 May 2006
  • Published:

Abstract

Frequency-domain and time-domain processing approaches to direction-of-arrival (DOA) estimation for multiple broadband far field signals using beamspace preprocessing structures are proposed. The technique is based on constant mainlobe response beamforming. A set of frequency-domain and time-domain beamformers with constant (frequency independent) mainlobe response and controlled sidelobes is designed to cover the spatial sector of interest using optimal array pattern synthesis technique and optimal FIR filters design technique. These techniques lead the resulting beampatterns higher mainlobe approximation accuracy and yet lower sidelobes. For the scenario of strong out-of-sector interfering sources, our approaches can form nulls or notches in the direction of them and yet guarantee that the mainlobe response of the beamformers is constant over the design band. Numerical results show that the proposed time-domain processing DOA estimator has comparable performance with the proposed frequency-domain processing method, and that both of them are able to resolve correlated source signals and provide better resolution at lower signal-to-noise ratio (SNR) and lower root-mean-square error (RMSE) of the DOA estimate compared with the existing method. Our beamspace DOA estimators maintain good DOA estimation and spatial resolution capability in the scenario of strong out-of-sector interfering sources.

Keywords

  • Correlate Source
  • Pattern Synthesis
  • Optimal Array
  • Lower Sidelobes
  • Design Band

[12345678910111213141516171819]

Authors’ Affiliations

(1)
Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100080, China

References

  1. Su G, Morf M: The signal subspace approach for multiple wide-band emitter location. IEEE Transactions on Acoustics, Speech, and Signal Processing 1983,31(6):1502-1522. 10.1109/TASSP.1983.1164233View ArticleGoogle Scholar
  2. Wax M, Shan T-J, Kailath T: Spatio-temporal spectral analysis by eigenstructure methods. IEEE Transactions on Acoustics, Speech, and Signal Processing 1984,32(4):817-827. 10.1109/TASSP.1984.1164400View ArticleGoogle Scholar
  3. Wang H, Kaveh M: Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources. IEEE Transactions on Acoustics, Speech, and Signal Processing 1985,33(4):823-831. 10.1109/TASSP.1985.1164667View ArticleGoogle Scholar
  4. Schmidt RO: Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 1986,34(3):276-280. 10.1109/TAP.1986.1143830View ArticleGoogle Scholar
  5. Lee T-S: Efficient wideband source localization using beamforming invariance technique. IEEE Transactions on Signal Processing 1994,42(6):1376-1387. 10.1109/78.286954View ArticleGoogle Scholar
  6. Ward DB, Ding Z, Kennedy RA: Broadband DOA estimation using frequency invariant beamforming. IEEE Transactions on Signal Processing 1998,46(5):1463-1469. 10.1109/78.668812View ArticleGoogle Scholar
  7. Ward DB, Kennedy RA, Williamson RC: FIR filter design for frequency invariant beamformers. IEEE Signal Processing Letters 1996,3(3):69-71. 10.1109/97.481158View ArticleGoogle Scholar
  8. Sturm JF: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 1999,11(1):625-653. 10.1080/10556789908805766MathSciNetView ArticleGoogle Scholar
  9. Lobo MS, Vandenberghe L, Boyd S, Lebret H: Applications of second-order cone programming. Linear Algebra and Its Applications 1998,284(1–3):193-228.MathSciNetView ArticleMATHGoogle Scholar
  10. Pesavento M, Gershman AB, Luo Z-Q: Robust array interpolation using second-order cone programming. IEEE Signal Processing Letters 2002,9(1):8-11. 10.1109/97.988716View ArticleGoogle Scholar
  11. Vorobyov SA, Gershman AB, Luo Z-Q: Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Transactions on Signal Processing 2003,51(2):313-324. 10.1109/TSP.2002.806865View ArticleGoogle Scholar
  12. Yan S, Ma YL: Robust supergain beamforming for circular array via second-order cone programming. Applied Acoustics 2005,66(9):1018-1032. 10.1016/j.apacoust.2005.01.003View ArticleGoogle Scholar
  13. Cox H, Zeskind R, Owen M: Robust adaptive beamforming. IEEE Transactions on Acoustics, Speech, and Signal Processing 1987,35(10):1365-1376. 10.1109/TASSP.1987.1165054View ArticleGoogle Scholar
  14. Compton RT Jr.: The relationship between tapped delay-line and FFT processing in adaptive arrays. IEEE Transactions on Antennas and Propagation 1988,36(1):15-26. 10.1109/8.1070View ArticleGoogle Scholar
  15. Godara LC: Application of the fast Fourier transform to broadband beamforming. Journal of the Acoustical Society of America 1995,98(1):230-240. 10.1121/1.413765View ArticleGoogle Scholar
  16. Van Trees HL: Detection, Estimation, and Modulation Theory, Part IV, Optimum Array Processing. John Wiley & Sons, New York, NY, USA; 2002.Google Scholar
  17. Yan S: Optimal design of FIR beamformer with frequency invariant patterns. Applied Acoustics 2006,67(6):511-528. 10.1016/j.apacoust.2005.09.008View ArticleGoogle Scholar
  18. Yan S, Ma YL: A unified framework for designing FIR filters with arbitrary magnitude and phase response. Digital Signal Processing 2004,14(6):510-522. 10.1016/j.dsp.2004.08.003View ArticleGoogle Scholar
  19. Gershman AB: Direction finding using beamspace root estimator banks. IEEE Transactions on Signal Processing 1998,46(11):3131-3135. 10.1109/78.726831View ArticleGoogle Scholar

Copyright

© Yan 2007

Advertisement