Skip to main content

Second-Order Optimal Array Receivers for Synchronization of BPSK, MSK, and GMSK Signals Corrupted by Noncircular Interferences

Abstract

The synchronization and/or time acquisition problem in the presence of interferences has been strongly studied these last two decades, mainly to mitigate the multiple access interferences from other users in DS/CDMA systems. Among the available receivers, only some scarce receivers may also be used in other contexts such as F/TDMA systems. However, these receivers assume implicitly or explicitly circular (or proper) interferences and become suboptimal for noncircular (or improper) interferences. Such interferences are characteristic in particular of radio communication networks using either rectilinear (or monodimensional) modulations such as BPSK modulation or modulation becoming quasirectilinear after a preprocessing such as MSK, GMSK, or OQAM modulations. For this reason, the purpose of this paper is to introduce and to analyze the performance of second-optimal array receivers for synchronization and/or time acquisition of BPSK, MSK, and GMSK signals corrupted by noncircular interferences. For given performances and in the presence of rectilinear signal and interferences, the proposed receiver allows a reduction of the number of sensors by a factor at least equal to two.

References

  1. 1.

    Bensley SE, Aazhang B: Subspace-based channel estimation for code division multiple access communication systems. IEEE Transactions on Communications 1996,44(8):1009-1020. 10.1109/26.535441

    Article  Google Scholar 

  2. 2.

    Bensley SE, Aazhang B: Maximum-likelihood synchronization of a single user for code-division multiple-access communication systems. IEEE Transactions on Communications 1998,46(3):392-399. 10.1109/26.662645

    Article  Google Scholar 

  3. 3.

    Madhow U: Blind adaptive interference suppression for the near-far resistant acquisition and demodulation of direct-sequence CDMA signals. IEEE Transactions on Signal Processing 1997,45(1):124-136. 10.1109/78.552211

    Article  Google Scholar 

  4. 4.

    Madhow U: Blind adaptive interference suppression for direct-sequence CDMA. Proceedings of the IEEE 1998,86(10):2049-2069. 10.1109/5.720252

    Article  Google Scholar 

  5. 5.

    Mantravadi A, Veeravalli VV: Multiple-access interference-resistant acquisition for band-limited CDMA systems with random sequences. IEEE Journal on Selected Areas in Communications 2000,18(7):1203-1213. 10.1109/49.857920

    Article  Google Scholar 

  6. 6.

    Ström EG, Parkvall S, Miller SL, Ottersten BE: Propagation delay estimation in asynchronous direct-sequence code-division multiple access systems. IEEE Transactions on Communications 1996,44(1):84-93. 10.1109/26.476100

    Article  Google Scholar 

  7. 7.

    Zheng D, Li J, Miller SL, Ström EG: An efficient code-timing estimator for DS-CDMA signals. IEEE Transactions on Signal Processing 1997,45(1):82-89. 10.1109/78.552207

    Article  Google Scholar 

  8. 8.

    Brennan LE, Reed IS: An adaptive array signal processing algorithm for communications. IEEE Transactions on Aerospace and Electronic Systems 1982,18(1):124-130.

    Article  Google Scholar 

  9. 9.

    Compton RT Jr.: An adaptive array in a spread-spectrum communication system. Proceedings of the IEEE 1978,66(3):289-298.

    Article  Google Scholar 

  10. 10.

    Dlugos DM, Scholtz RA: Acquisition of spread spectrum signals by an adaptive array. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(8):1253-1270. 10.1109/29.31273

    Article  Google Scholar 

  11. 11.

    Wang B, Kwon HM: PN code acquisition using smart antenna for spread-spectrum wireless communications—part I. IEEE Transactions on Vehicular Technology 2003,52(1):142-149. 10.1109/TVT.2002.807152

    Article  Google Scholar 

  12. 12.

    Winters JH: Spread spectrum in a four-phase communication system employing adaptive antennas. IEEE Transactions on Communications 1982,30(5, part 2):929-936. 10.1109/TCOM.1982.1095539

    Article  Google Scholar 

  13. 13.

    Picinbono B: On circularity. IEEE Transactions on Signal Processing 1994,42(12):3473-3482. 10.1109/78.340781

    Article  Google Scholar 

  14. 14.

    Neeser FD, Massey JL: Proper complex random processes with applications to information theory. IEEE Transactions on Information Theory 1993,39(4):1293-1302. 10.1109/18.243446

    MathSciNet  Article  Google Scholar 

  15. 15.

    Sfar S, Letaief KB: Improved group multiuser detection with multiple receive antennas in the presence of improper multi-access interference. IEEE Transactions on Communications 2005,53(4):560-563. 10.1109/TCOMM.2005.844937

    Article  Google Scholar 

  16. 16.

    Proakis JG: Digital Communications. 3rd edition. McGraw-Hill, New York, NY, USA; 1995.

    Google Scholar 

  17. 17.

    Chevalier P, Pipon F: New insights into optimal widely linear array receivers for the demodulation of BPSK, MSK, and GMSK signals corrupted by noncircular interferences-application to SAIC. IEEE Transactions on Signal Processing 2006,54(3):870-883.

    Article  Google Scholar 

  18. 18.

    Ding Z, Li G: Single-channel blind equalization for GSM cellular systems. IEEE Journal on Selected Areas in Communications 1998,16(8):1493-1505. 10.1109/49.730456

    Article  Google Scholar 

  19. 19.

    Trigui H, Slock DTM: Performance bounds for cochannel interference cancellation within the current GSM standard. Signal Processing 2000,80(7):1335-1346. 10.1016/S0165-1684(00)00040-2

    Article  Google Scholar 

  20. 20.

    Chevalier P, Pipon F, Delaveau F: Procédé et dispositif de synchronisation de liaisons rectilignes ou quasi-rectilignes en présence d'interférences de même nature. Patent FR.05.01784, February 2005

  21. 21.

    Picinbono B, Chevalier P: Widely linear estimation with complex data. IEEE Transactions on Signal Processing 1995,43(8):2030-2033. 10.1109/78.403373

    Article  Google Scholar 

  22. 22.

    Brown W, Crane R: Conjugate linear filtering. IEEE Transactions on Information Theory 1969,15(4):462-465. 10.1109/TIT.1969.1054330

    MathSciNet  Article  Google Scholar 

  23. 23.

    Gardner WA: Cyclic Wiener filtering: theory and method. IEEE Transactions on Communications 1993,41(1):151-163. 10.1109/26.212375

    Article  Google Scholar 

  24. 24.

    Gardner WA: Cyclostationarity in Communications and Signal Processing. IEEE Press, New York, NY, USA; 1994.

    Google Scholar 

  25. 25.

    Chevalier P: Filtrage d'antenne optimal pour signaux non stationnaires-concepts, performances. Proceedings of the 15th GRETSI Symposium on Signal and Image Processing, September 1995, Juan-Les-Pins, France 233–236.

    Google Scholar 

  26. 26.

    Chevalier P: Optimal array processing for non stationary signals. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '96), May 1996, Atlanta, Ga, USA 5: 2868–2871.

    Google Scholar 

  27. 27.

    Ciblat P, Loubaton P, Serpedin E, Giannakis GB: Performance analysis of blind carrier frequency offset estimators for noncircular transmissions through frequency-selective channels. IEEE Transactions on Signal Processing 2002,50(1):130-140. 10.1109/78.972489

    Article  Google Scholar 

  28. 28.

    Ciblat P, Serpedin E, Wang Y: On a blind fractionally sampling-based carrier frequency offset estimator for noncircular transmissions. IEEE Signal Processing Letters 2003,10(4):89-92. 10.1109/LSP.2003.809031

    Article  Google Scholar 

  29. 29.

    Napolitano A, Tanda M: Doppler-channel blind identification for noncircular transmissions in multiple-access systems. IEEE Transactions on Communications 2004,52(12):2073-2078. 10.1109/TCOMM.2004.838716

    Article  Google Scholar 

  30. 30.

    Chevalier P, Pipon F: Optimal array receiver for synchronization of a BPSK signal corrupted by non circular interferences. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '06), May 2006, Toulouse, France 4: 1061–1064.

    MATH  Google Scholar 

  31. 31.

    van Trees HL: Detection, Estimation and Modulation Theory—Part I. John Wiley & Sons, New York, NY, USA; 1968.

    Google Scholar 

  32. 32.

    Delaveau F, Pipon F, Lambron O: Smart antennas for interference resolution in cellular networks. Proceedings of the 14th International Wroclaw Symposium and Exhibition on Electromagnetic Compatibility, June 1998, Wroclaw, Poland 264–267.

    Google Scholar 

  33. 33.

    Picinbono B: Second-order complex random vectors and normal distributions. IEEE Transactions on Signal Processing 1996,44(10):2637-2640. 10.1109/78.539051

    Article  Google Scholar 

  34. 34.

    van den Bos A: The multivariate complex normal distribution—a generalization. IEEE Transactions on Information Theory 1995,41(2):537-539. 10.1109/18.370165

    MathSciNet  Article  Google Scholar 

  35. 35.

    Monzingo RA, Miller TW: Introduction to Adaptive Arrays. John Wiley & Sons, New York, NY, USA; 1980.

    Google Scholar 

  36. 36.

    Laurent PA: Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (AMP). IEEE Transactions on Communications 1986,34(2):150-160. 10.1109/TCOM.1986.1096504

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pascal Chevalier.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Chevalier, P., Pipon, F. & Delaveau, F. Second-Order Optimal Array Receivers for Synchronization of BPSK, MSK, and GMSK Signals Corrupted by Noncircular Interferences. EURASIP J. Adv. Signal Process. 2007, 045605 (2007). https://doi.org/10.1155/2007/45605

Download citation

Keywords

  • Information Technology
  • Communication Network
  • Radio Communication Network
  • Time Acquisition
  • Quantum Information