Skip to main content

Expectation-Maximization Method for EEG-Based Continuous Cursor Control

Abstract

To develop effective learning algorithms for continuous prediction of cursor movement using EEG signals is a challenging research issue in brain-computer interface (BCI). In this paper, we propose a novel statistical approach based on expectation-maximization (EM) method to learn the parameters of a classifier for EEG-based cursor control. To train a classifier for continuous prediction, trials in training data-set are first divided into segments. The difficulty is that the actual intention (label) at each time interval (segment) is unknown. To handle the uncertainty of the segment label, we treat the unknown labels as the hidden variables in the lower bound on the log posterior and maximize this lower bound via an EM-like algorithm. Experimental results have shown that the averaged accuracy of the proposed method is among the best.

References

  1. 1.

    Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM: Brain-computer interfaces for communication and control. Clinical Neurophysiology 2002,113(6):767–791. 10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

  2. 2.

    Birbaumer N, Hinterberger T, Kübler A, Neumann N: The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2003,11(2):120–123. 10.1109/TNSRE.2003.814439

    Article  Google Scholar 

  3. 3.

    Pfurtscheller G, Neuper C: Motor imagery and direct brain-computer communication. Proceedings of the IEEE 2001,89(7):1123–1134. 10.1109/5.939829

    Article  Google Scholar 

  4. 4.

    Farwell LA, Donchin E: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology 1988,70(6):510–523. 10.1016/0013-4694(88)90149-6

    Article  Google Scholar 

  5. 5.

    Meinicke P, Kaper M, Hoppe F, Heumann M, Ritter H: Improving transfer rates in brain computer interfacing: a case study. In Advances in Neural Information Processing Systems. MIT Press, Cambridge, Mass, USA; 2003:1107–1114.

    Google Scholar 

  6. 6.

    Middendorf M, McMillan G, Calhoun G, Jones KS: Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Transactions on Rehabilitation Engineering 2000,8(2):211–214. 10.1109/86.847819

    Article  Google Scholar 

  7. 7.

    Wolpaw JR, McFarland DJ, Vaughan TM, Schalk G: The Wadsworth Center brain-computer interface (BCI) research and development program. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2003,11(2):204–207. 10.1109/TNSRE.2003.814442

    Article  Google Scholar 

  8. 8.

    Wolpaw JR, McFarland DJ: Multichannel EEG-based brain-computer communication. Electroencephalography and Clinical Neurophysiology 1994,90(6):444–449. 10.1016/0013-4694(94)90135-X

    Article  Google Scholar 

  9. 9.

    McFarland DJ, Wolpaw JR: EEG-based communication and control: speed-accuracy relationships. Applied Psychophysiology Biofeedback 2003,28(3):217–231. 10.1023/A:1024685214655

    Article  Google Scholar 

  10. 10.

    Roberts SJ, Penny WD: Real-time brain-computer interfacing: a preliminary study using Bayesian learning. Medical and Biological Engineering and Computing 2000,38(1):56–61. 10.1007/BF02344689

    Article  Google Scholar 

  11. 11.

    Cheng M, Jia W, Gao X, Gao S, Yang F: Mu rhythm-based cursor control: an offline analysis. Clinical Neurophysiology 2004,115(4):745–751. 10.1016/j.clinph.2003.11.038

    Article  Google Scholar 

  12. 12.

    Blanchard G, Blankertz B: BCI competition 2003-data set IIa: spatial patterns of self-controlled brain rhythm modulations. IEEE Transactions on Biomedical Engineering 2004,51(6):1062–1066. 10.1109/TBME.2004.826691

    Article  Google Scholar 

  13. 13.

    Blankertz B, Müller K-R, Curio G, et al.: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Transactions on Biomedical Engineering 2004,51(6):1044–1051. 10.1109/TBME.2004.826692

    Article  Google Scholar 

  14. 14.

    Dempster AP, Laird NM, Rubin DB: Maximum likelihood for incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B 1977, 39: 1–38.

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Neal RM, Hinton GE: A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models. Edited by: Jordan MI. Kluwer Academic, Dordrecht, The Netherlands; 1998:355–368.

    Google Scholar 

  16. 16.

    Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK: An introduction to variational methods for graphical models. In Learning in Graphical Models. Edited by: Jordan MI. MIT Press, Cambridge, Mass, USA; 1999.

    Google Scholar 

  17. 17.

    Bishop CM: Neural Networks for Pattern Recognition. Oxford University Press, Oxford, UK; 1995.

    Google Scholar 

  18. 18.

    Jebara T: Machine Learning: Discriminative and Generative. Kluwer Academic, Dordrecht, The Netherlands; 2004.

    Google Scholar 

  19. 19.

    MacKay DJC: Bayesian interpolation. Neural Computation 1992,4(3):415–447. 10.1162/neco.1992.4.3.415

    Article  Google Scholar 

  20. 20.

    Ramoser H, Müller-Gerking J, Pfurtscheller G: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering 2000,8(4):441–446. 10.1109/86.895946

    Article  Google Scholar 

  21. 21.

    MacKay DJC: The evidence framework applied to classification networks. Neural Computation 1992,4(5):698–714.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Zhu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, X., Guan, C., Wu, J. et al. Expectation-Maximization Method for EEG-Based Continuous Cursor Control. EURASIP J. Adv. Signal Process. 2007, 049037 (2006). https://doi.org/10.1155/2007/49037

Download citation

Keywords

  • Learning Algorithm
  • Quantum Information
  • Research Issue
  • Hide Variable
  • Challenging Research