Skip to main content

Iterative Desensitisation of Image Restoration Filters under Wrong PSF and Noise Estimates

Abstract

The restoration achieved on the basis of a Wiener scheme is an optimum since the restoration filter is the outcome of a minimisation process. Moreover, the Wiener restoration approach requires the estimation of some parameters related to the original image and the noise, as well as knowledge about the PSF function. However, in a real restoration problem, we may not possess accurate values of these parameters, making results relatively far from the desired optimum. Indeed, a desensitisation process is required to decrease this dependency on the parameter errors of the restoration filter. In this paper, we present an iterative method to reduce the sensitivity of a general restoration scheme (but specified to the Wiener filter) with regards to wrong estimates of the said parameters. Within the Fourier transform domain, a sensitivity analysis is tackled in depth with the purpose of defining a number of iterations for each frequency element, which leads to the aimed desensitisation regardless of the errors on estimates. Experimental computations using meaningful values of parameters are addressed. The proposed technique effectively achieves better results than those obtained when using the same wrong estimates in the Wiener approach, as well as verified on an SAR restoration.

References

  1. 1.

    Andrews HC, Hunt BR: Digital Image Restoration. Prentice-Hall, Englewood Cliffs, NJ, USA; 1977.

    Google Scholar 

  2. 2.

    Gonzalez RC, Wintz P: Digital Image Processing. Addison Wesley, Reading, Mass, USA; 1992.

    Google Scholar 

  3. 3.

    Tikhonov N, Arsenin VY: Solutions of Ill-Posed Problems, Scripta Series in Mathematics. John Wiley & Sons, New York, NY, USA; 1977.

    Google Scholar 

  4. 4.

    Banham MR, Katsaggelos AK: Digital image restoration. IEEE Signal Processing Magazine 1997,14(2):24-41. 10.1109/79.581363

    Article  Google Scholar 

  5. 5.

    Lagendijk RL, Tekalp AM, Biemond JM: Maximum likelihood image and blur identification: a unifying approach. Optical Engineering 1990,29(5):422-435. 10.1117/12.55611

    Article  Google Scholar 

  6. 6.

    Reeves SJ, Mersereau RM: Blur identification by the method of generalized cross-validation. IEEE Transactions on Image Processing 1992,1(3):301–311. 10.1109/83.148604

    Article  Google Scholar 

  7. 7.

    Tekalp AM, Kaufman H, Woods JW: Identification of image and blur parameters for the restoration of noncausal blurs. IEEE Transactions on Acoustics, Speech, and Signal Processing 1986,34(4):963-972. 10.1109/TASSP.1986.1164886

    Article  Google Scholar 

  8. 8.

    You Y-L, Kaveh M: A regularization approach to joint blur identification and image restoration. IEEE Transactions on Image Processing 1996,5(3):416-428. 10.1109/83.491316

    Article  Google Scholar 

  9. 9.

    Giannakis GB, Heath RW Jr.: Blind identification of multichannel FIR blurs and perfect image restoration. IEEE Transactions on Image Processing 2000,9(11):1877-1896. 10.1109/83.877210

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Feng C, Ma J-W, Chen J-P: The PSF correction method for satellite image restoration. Proceedings of the 3rd International Conference on Image and Graphics, December 2004, Hong Kong 31–34.

    Google Scholar 

  11. 11.

    Ciftci M, Williams DB: Optimal estimation and sequential channel equalization algorithms for chaotic communications systems. EURASIP Journal on Applied Signal Processing 2001,2001(4):249-256. 10.1155/S1110865701000282

    MATH  Article  Google Scholar 

  12. 12.

    Galleani L, Cohen L, Nelson D, Scargle JD: Instantaneous spectrum estimation from event-based densities. EURASIP Journal on Applied Signal Processing 2002,2002(1):87-91. 10.1155/S1110865702000380

    MATH  Google Scholar 

  13. 13.

    Hayenga M, Swan S, Zaharias A: Point Spread Function Estimation for the purpose of Motion Blurred Image Enhancement. 2002.

    Google Scholar 

  14. 14.

    Devcic Z, Loncaric S: Blur identification using averaged spectra of degraded image singular vectors. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '00), June 2000, Istanbul, Turkey 4: 2195–2198.

    Google Scholar 

  15. 15.

    Molina R, Katsaggelos AK, Mateos J, Hermoso A, Segall CA: Restoration of severely blurred high range images using stochastic and deterministic relaxation algorithms in compound Gauss-Markov random fields. Pattern Recognition 2000,33(4):555-571. 10.1016/S0031-3203(99)00072-2

    Article  Google Scholar 

  16. 16.

    Balram N, Moura JMF: Noncausal Gauss-Markov random fields: parameter structure and estimation. IEEE Transactions on Information Theory 1993,39(4):1333-1355. 10.1109/18.243450

    MATH  Article  Google Scholar 

  17. 17.

    Jeng FC, Woods JW: Compound Gauss-Markov models for image processing. In Digital Image Restoration, Springer Series in Information Science. Volume 23. Edited by: Katsaggelos AK. Springer, Berlin, Germany; 1991.

    Google Scholar 

  18. 18.

    Martin-Fernandez M, San Josa-Estepar R, Westin C-F, Alberola-Lopez C: A novel Gauss-Markov random field approach for regularization of diffusion tensor maps. 9th International Conference on Computer Aided Systems Theory (EUROCAST '03), February 2003, Las Palmas de Gran Canaria, Spain, Lecture Notes in Computer Science 2809: 506–517.

    Google Scholar 

  19. 19.

    Romberg JK, Choi H, Baraniuk RG: Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Transactions on Image Processing 2001,10(7):1056-1068. 10.1109/83.931100

    Article  Google Scholar 

  20. 20.

    Choi H, Baraniuk RG: Wavelet statistical models and Besov spaces. Wavelet Applications in Signal and Image Processing VII, July 1999, Denver, Colo, USA, Proceedings of SPIE 3813: 489–501.

    Article  Google Scholar 

  21. 21.

    Mallat SG: Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(12):2091-2110. 10.1109/29.45554

    Article  Google Scholar 

  22. 22.

    Koivunen V: A robust nonlinear filter for image restoration. IEEE Transactions on Image Processing 1995,4(5):569-578. 10.1109/83.382492

    Article  Google Scholar 

  23. 23.

    Voloshynovskiy S: Robust image restoration based on concept of M-estimation and parametric model of image spectrum. Proceedings of the 5th International Workshop on Systems, Signals and Image Processing (IWSSIP '98), June 1998, Zagreb, Croatia 123–126.

    Google Scholar 

  24. 24.

    Allende H, Galbiati J, Vallejos R: Digital image restoration using autoregressive time series type models. Anais IX Simp'sio Brasileiro de Sensoriamento Remoto, September 1998, Santos, Brasil 1017–1027.

    Google Scholar 

  25. 25.

    Hillery AD, Chin RT: Iterative Wiener filters for image restoration. IEEE Transactions on Signal Processing 1991,39(8):1892-1899. 10.1109/78.91161

    Article  Google Scholar 

  26. 26.

    Lagendijk RL, Biemond J, Boekee DE: Regularized iterative image restoration with ringing reduction. IEEE Transactions on Acoustics, Speech, and Signal Processing 1988,36(12):1874-1888. 10.1109/29.9032

    MATH  Article  Google Scholar 

  27. 27.

    Nagy JG, Plemmons RJ, Torgersen TC: Iterative image restoration using approximate inverse preconditioning. IEEE Transactions on Image Processing 1996,5(7):1151-1162. 10.1109/83.502394

    Article  Google Scholar 

  28. 28.

    Erbas C, Kent S: A new iterative technique for image restoration of ERS-2 raw data. Proceedings of International Conference on Recent Advances in Space Technologies (RAST '03), November 2003, Istanbul, Turkey 85–90.

    Google Scholar 

  29. 29.

    Haind M: Recursive model-based image restoration. Proceedings of the 15th International Conference on Pattern Recognition (ICPR '00), September 2000, Barcelona, Spain 3: 342–345.

    Article  Google Scholar 

  30. 30.

    Click SJ, Xia W: Iterative restoration of SPECT projection images. IEEE Transactions on Nuclear Science 1997,44(2):204-211. 10.1109/23.568807

    Article  Google Scholar 

  31. 31.

    Moon JI, Kim SK, Paik JK, Kang MG: Fast iterative image restoration algorithms. Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, November 1996, Seoul, Korea 361–364.

    Google Scholar 

  32. 32.

    Noonan JP, Natarajan P: A general formulation for iterative restoration methods. IEEE Transactions on Signal Processing 1997,45(10):2590-2593. 10.1109/78.640726

    Article  Google Scholar 

  33. 33.

    Lee SH, Cho NI, Park J-I: Directional regularisation for constrained iterative image restoration. Electronics Letters 2003,39(23):1642-1643. 10.1049/el:20031064

    Article  Google Scholar 

  34. 34.

    Chen W, Chen M, Zhou J: Adaptively regularized constrained total least-squares image restoration. IEEE Transactions on Image Processing 2000,9(4):588-596. 10.1109/83.841936

    MATH  Article  Google Scholar 

  35. 35.

    Choy SO, Chan YH, Siu WC: Image restoration by regularisation in uncorrelated transform domain. IEE Proceedings: Vision, Image and Signal Processing 2000,147(6):587-594. 10.1049/ip-vis:20000383

    Google Scholar 

  36. 36.

    Cisneros G, Bernués E, Rodríguez I, Santiago MA, Álvarez F: Desensitisation of medical images restoration under crude estimates of mobile radio channels. Proceedings of IEEE International Conference on Image Processing (ICIP '04), October 2004, Singapore 1: 315–319.

    Google Scholar 

  37. 37.

    Molina R, Katsaggelos AK, Mateos J: Bayesian and regularization methods for hyperparameter estimation in image restoration. IEEE Transactions on Image Processing 1999,8(2):231-246. 10.1109/83.743857

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Molina R, Mateos J, Katsaggelos AK: Blind deconvolution using a variational approach to parameter, image, and blur estimation. IEEE Transactions on Image Processing 2006,15(12):3715-3727.

    MathSciNet  Article  Google Scholar 

  39. 39.

    Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE: On the Lambert W function. Advances in Computational Mathematics 1996,5(4):329-359.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Santiago.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santiago, M.A., Cisneros, G. & Bernués, E. Iterative Desensitisation of Image Restoration Filters under Wrong PSF and Noise Estimates. EURASIP J. Adv. Signal Process. 2007, 072658 (2007). https://doi.org/10.1155/2007/72658

Download citation

Keywords

  • Fourier Transform
  • Sensitivity Analysis
  • Original Image
  • Iterative Method
  • Quantum Information