Skip to main content
  • Research Article
  • Open access
  • Published:

Principal Component Analysis in ECG Signal Processing

Abstract

This paper reviews the current status of principal component analysis in the area of ECG signal processing. The fundamentals of PCA are briefly described and the relationship between PCA and Karhunen-Loève transform is explained. Aspects on PCA related to data with temporal and spatial correlations are considered as adaptive estimation of principal components is. Several ECG applications are reviewed where PCA techniques have been successfully employed, including data compression, ST-T segment analysis for the detection of myocardial ischemia and abnormalities in ventricular repolarization, extraction of atrial fibrillatory waves for detailed characterization of atrial fibrillation, and analysis of body surface potential maps.

References

  1. Joliffe IT: Principal Component Analysis. Springer, New York, NY, USA; 2002.

    Google Scholar 

  2. Callaerts D, De Moore B, Vandewalle J, Sansen W, Vantrappen G, Janssens J: Comparison of SVD methods to extract the foetal electrocardiogram from cutaneous electrode signals. Medical and Biological Engineering and Computing 1990,28(3):217-224. 10.1007/BF02442670

    Article  Google Scholar 

  3. Uijen GJH, van Oosterom A: The filtering of multilead ECGs by means of the singular value decomposition. Proceedings of the 18th Annual Conference on Computers in Cardiology (CIC '91), September 1991, Venice, Italy 137–140.

    Google Scholar 

  4. Kanjilal PP, Palit S, Saha G: Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Transactions on Biomedical Engineering 1997,44(1):51-59. 10.1109/10.553712

    Article  Google Scholar 

  5. Acar B, Köymen H: SVD-based on-line exercise ECG signal orthogonalization. IEEE Transactions on Biomedical Engineering 1999,46(3):311-321. 10.1109/10.748984

    Article  Google Scholar 

  6. Paul JS, Reddy MR, Kumar VJ: A transform domain SVD filter for suppression of muscle noise artefacts in exercise ECG's. IEEE Transactions on Biomedical Engineering 2000,47(5):654-663. 10.1109/10.841337

    Article  Google Scholar 

  7. De Lathauwer L, De Moor B, Vandewalle J: SVD-based methodologies for fetal electrocardiogram extraction. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '00), June 2000, Istanbul, Turkey 6: 3771–3774.

    Google Scholar 

  8. Priori SG, Mortara DW, Napolitano C, et al.: Evaluation of the spatial aspects of T-wave complexity in the long-QT syndrome. Circulation 1997,96(9):3006-3012.

    Article  Google Scholar 

  9. Okin PM, Devereux RB, Fabsitz RR, Lee ET, Galloway JM, Howard BV: Principal component analysis of the T wave and prediction of cardiovascular mortality in American Indians: the strong heart study. Circulation 2002,105(6):714-719. 10.1161/hc0602.103585

    Article  Google Scholar 

  10. Sörnmo L, Laguna P: Bioelectrical Signal Processing in Cardiac and Neurological Applications. Elsevier/Academic Press, Amsterdam, The Netherlands; 2005.

    Google Scholar 

  11. Ahmed N, Rao KR: Orthogonal Transforms for Digital Signal Processing. Springer, New York, NY, USA; 1975.

    Book  MATH  Google Scholar 

  12. Gerbrands JJ: On the relationships between SVD, KLT and PCA. Pattern Recognition 1981,14(1–6):375-381.

    Article  MathSciNet  MATH  Google Scholar 

  13. Golub GH, van Loan CF: Matrix Computations. 2nd edition. The Johns Hopkins University Press, Baltimore, Md, USA; 1989.

    MATH  Google Scholar 

  14. Olmos S, Martínez JP, Sörnmo L: Spatio-temporal linear expansions for repolarization analysis. Proceedings of Computers in Cardiology (CIC '02), September 2002, Memphis, TN, USA 29: 689–692.

    Article  Google Scholar 

  15. Moon T, Stirling W: Mathematical Methods and Algorithms for Signal Processing. Prentice-Hall, Upper Saddle River, NJ, USA; 2000.

    Google Scholar 

  16. Laguna P, Jané R, Meste O, et al.: Adaptive filter for event-related bioelectric signals using an impulse correlated reference input: comparison with signal averaging techniques. IEEE Transactions on Biomedical Engineering 1992,39(10):1032-1044. 10.1109/10.161335

    Article  Google Scholar 

  17. Laguna P, Jané R, Masgrau E, Caminal P: The adaptive linear combiner with a periodic-impulse reference input as a linear comb filter. Signal Processing 1996,48(3):193-203. 10.1016/0165-1684(95)00135-2

    Article  MATH  Google Scholar 

  18. Chan FHY, Lam FK, Poon PWF, Qiu W: Detection of brainstem auditory evoked potential by adaptive filtering. Medical and Biological Engineering and Computing 1995,33(1):69-75. 10.1007/BF02522949

    Article  Google Scholar 

  19. Parsa V, Parker PA: Multireference adaptive noise cancellation applied to somatosensory evoked potentials. IEEE Transactions on Biomedical Engineering 1994,41(8):792-800. 10.1109/10.310094

    Article  Google Scholar 

  20. Vaz CA, Thakor NV: Adaptive Fourier estimation of time-varying evoked potentials. IEEE Transactions on Biomedical Engineering 1989,36(4):448-455. 10.1109/10.18751

    Article  Google Scholar 

  21. Olmos S, Sörnmo L, Laguna P: Block adaptive filters with deterministic reference inputs for event-related signals: BLMS and BRLS. IEEE Transactions on Signal Processing 2002,50(5):1102-1112. 10.1109/78.995066

    Article  Google Scholar 

  22. Hamilton DJ, Sandham WA, McQueen J, Blanco A: Electrocardiogram data compression by estimation of higher-index principal components. EURASIP Journal on Applied Signal Processing 1998,5(1):49-58.

    Article  Google Scholar 

  23. García J, Olmos S, Moody GB, Mark RG, Laguna P: Adaptive estimation of Karhunen-Loève series applied to the study of ischemic ECG records. Proceedings of Computers in Cardiology (CIC '96), September 1996, Indianapolis, Ind, USA 249–252.

    Google Scholar 

  24. Diamantaras KI, Kung SY: Principal Component Neural Networks: Theory and Applications. John Wiley & Sons, New York, NY, USA; 1996.

    MATH  Google Scholar 

  25. Stamkopoulos T, Diamantaras K, Maglaveras N, Strintzis M: ECG analysis using nonlinear PCA neural networks for ischemia detection. IEEE Transactions on Signal Processing 1998,46(11):3058-3067. 10.1109/78.726818

    Article  Google Scholar 

  26. Karlsson S: Representation of ECG records by Karhunen-Loève expansions. Proceedings of the 7th International Conference on Medical & Biological Engineering, August 1967, Stockholm, Sweden 105.

    Google Scholar 

  27. Ahmed N, Milne PJ, Harris SG: Electrocardiographic data compression via orthogonal transforms. IEEE Transactions on Biomedical Engineering 1975,22(6):484-487.

    Article  Google Scholar 

  28. Evans AK, Lux RL, Burgess MJ, Wyatt RF, Abildskov JA: Redundancy reduction for improved display and analysis of body surface potential maps. II. Temporal compression. Circulation Research 1981,49(1):197-203.

    Article  Google Scholar 

  29. Womble ME, Halliday JS, Mitter SK, Lancaster MC, Triebwasser JH: Data compression for storing and transmitting ECG's/VCG's. Proceedings of the IEEE 1977,65(5):702-706.

    Article  Google Scholar 

  30. Degani R, Bortolan G, Murolo R: Karhunen-Loève coding of ECG signals. Proceedings of Computers in Cardiology (CIC '90), September 1990, Chicago, Ill, USA 395–398.

    Google Scholar 

  31. Olmos S, Millán M, García J, Laguna P: ECG data compression with the Karhunen-Loève transform. Proceedings of Computers in Cardiology (CIC '96), September 1996, Indianapolis, Ind, USA 253–256.

    Google Scholar 

  32. Blanchett T, Kember GC, Fenton GA: KLT-based quality controlled compression of single-lead ECG. IEEE Transactions on Biomedical Engineering 1998,45(7):942-945. 10.1109/10.686803

    Article  Google Scholar 

  33. Hamilton DJ, McQueen J, Sandham WA: Improved PCA-based electrocardiogram data compression using variable-length asymmetric beat vectors. EURASIP Journal on Applied Signal Processing 1999,6(4):194-202.

    Article  Google Scholar 

  34. Laguna P, Moody GB, García J, Goldberger AL, Mark RG: Analysis of the ST-T complex of the electrocardiogram using the Karhunen-Loève transform: adaptive monitoring and alternans detection. Medical and Biological Engineering and Computing 1999,37(2):175-189. 10.1007/BF02513285

    Article  Google Scholar 

  35. Zigel Y, Cohen A, Katz A: ECG signal compression using analysis by synthesis coding. IEEE Transactions on Biomedical Engineering 2000,47(10):1308-1316. 10.1109/10.871403

    Article  Google Scholar 

  36. Zigel Y, Cohen A, Katz A: The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Transactions on Biomedical Engineering 2000,47(11):1422-1430. 10.1109/TBME.2000.880093

    Article  Google Scholar 

  37. Bradie B: Wavelet packet-based compression of single lead ECG. IEEE Transactions on Biomedical Engineering 1996,43(5):493-501. 10.1109/10.488797

    Article  Google Scholar 

  38. Çetin AE, Köymen H, Aydin MC: Multichannel ECG data compression by multirate signal processing and transform domain coding techniques. IEEE Transactions on Biomedical Engineering 1993,40(5):495-499. 10.1109/10.243411

    Article  Google Scholar 

  39. Olmos S, Laguna P: Multi-lead ECG data compression with orthogonal expansions: KLT and wavelet packets. Proceedings of Computers in Cardiology (CIC '99), September 1999, Hannover, Germany 539–542.

    Google Scholar 

  40. Jager FJ, Mark RG, Moody G, Divjak S: Analysis of transient ST segment changes during ambulatory monitoring using the Karhunen-Loève transform. Proceedings of Computers in Cardiology (CIC '92), October 1992, Durham, NC, USA 691–694.

    Chapter  Google Scholar 

  41. García J, Lander P, Sörnmo L, Olmos S, Wagner G, Laguna P: Comparative study of local and Karhunen-Loève-based ST-T indexes in recordings from human subjects with induced myocardial ischemia. Computers and Biomedical Research 1998,31(4):271-292. 10.1006/cbmr.1998.1481

    Article  Google Scholar 

  42. García J, Wagner G, Sörnmo L, Olmos S, Lander P, Laguna P: Temporal evolution of traditional versus transformed ECG-based indexes in patients with induced myocardial ischemia. Journal of Electrocardiology 2000,33(1):37-47. 10.1016/S0022-0736(00)80099-0

    Article  Google Scholar 

  43. García J, Sörnmo L, Olmos S, Laguna P: Automatic detection of ST-T complex changes on the ECG using filtered RMS difference series: application to ambulatory ischemia monitoring. IEEE Transactions on Biomedical Engineering 2000,47(9):1195-1201. 10.1109/10.867943

    Article  Google Scholar 

  44. García J, Wagner G, Sörnmo L, Lander P, Laguna P: Identification of the occluded artery in patients with myocardial ischemia induced by prolonged percutaneous transluminal coronary angioplasty using traditional vs transformed ECG-based indexes. Computers and Biomedical Research 1999,32(5):470-482. 10.1006/cbmr.1999.1520

    Article  Google Scholar 

  45. García J, Åström M, Mendive J, Laguna P, Sörnmo L: ECG-based detection of body position changes in ischemia monitoring. IEEE Transactions on Biomedical Engineering 2003,50(6):677-685. 10.1109/TBME.2003.812208

    Article  Google Scholar 

  46. Zabel M, Malik M, Hnatkova K, et al.: Analysis of T-wave morphology from the 12-lead electrocardiogram for prediction of long-term prognosis in male US veterans. Circulation 2002,105(9):1066-1070. 10.1161/hc0902.104598

    Article  Google Scholar 

  47. Bazett HC: An analysis of the time relations of electrocardiograms. Heart 1920, 7: 353–370.

    Google Scholar 

  48. Pueyo E, Smetana P, Caminal P, Bayes de Luna A, Malik M, Laguna P: Characterization of QT interval adaptation to RR interval changes and its use as a risk-stratifier of arrhythmic mortality in amiodarone-treated survivors of acute myocardial infarction. IEEE Transactions on Biomedical Engineering 2004,51(9):1511-1520. 10.1109/TBME.2004.828050

    Article  Google Scholar 

  49. Day CP, McComb JM, Campbell RWF: QT dispersion: an indication of arrhythmia risk in patients with long QT intervals. British Heart Journal 1990,63(6):342-344. 10.1136/hrt.63.6.342

    Article  Google Scholar 

  50. Malik M, Acar B, Gang Y, Yap YG, Hnatkova K, Camm AJ: QT dispersion does not represent electrocardiographic interlead heterogeneity of ventricular repolarization. Journal of Cardiovascular Electrophysiology 2000,11(8):835-843. 10.1111/j.1540-8167.2000.tb00061.x

    Article  Google Scholar 

  51. Smetana P, Batchvarov VN, Hnatkova K, Camm AJ, Malik M: Ventricular gradient and nondipolar repolarization components increase at higher heart rate. American Journal of Physiology: Heart and Circulatory Physiology 2004,286(1):H131-H136.

    Google Scholar 

  52. Acar B, Yi G, Hnatkova K, Malik M: Spatial, temporal and wavefront direction characteristics of 12-lead T-wave morphology. Medical and Biological Engineering and Computing 1999,37(5):574-584. 10.1007/BF02513351

    Article  Google Scholar 

  53. Arini PD, Valverde ER, Bertran GC, Laguna P: Geometrical and temporal ECG features for quantification of increased ventricular repolarization dispersion in an experimental heart rabbit model. Proceedings of Computers in Cardiology (CIC '05), September 2005, Lyon, France 89–92.

    Google Scholar 

  54. Smith JM, Clancy EA, Valeri CR, Ruskin JN, Cohen RJ: Electrical alternans and cardiac electrical instability. Circulation 1988,77(1):110-121. 10.1161/01.CIR.77.1.110

    Article  Google Scholar 

  55. Martínez JP, Olmos S: Methodological principles of T wave alternans analysis: a unified framework. IEEE Transactions on Biomedical Engineering 2005,52(4):599-613. 10.1109/TBME.2005.844025

    Article  Google Scholar 

  56. Laguna P, Ruiz M, Moody GB, Mark RG: Repolarization alternans detection using the KL transform and the beatquency spectrum. Proceedings of Computers in Cardiology (CIC '96), September 1996, Indianapolis, Ind, USA 673–676.

    Google Scholar 

  57. Fuster V, Rydén LE, Asinger RW, et al.: ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation: executive summary a report of the American College of Cardiology/American Heart Association task force on practice guidelines and the European Society of Cardiology committee for practice guidelines and policy conferences (committee to develop guidelines for the management of patients with atrial fibrillation) developed in collaboration with the North American Society of pacing and electrophysiology . Circulation 2001,104(17):2118-2150.

    Article  Google Scholar 

  58. Bollmann A: First comes diagnosis then comes treatment: an underappreciated paradigm in atrial fibrillation management. European Heart Journal 2005,26(23):2487-2489. 10.1093/eurheartj/ehi578

    Article  Google Scholar 

  59. Einthoven W: Le télécardiogramme. Archives Internationales de Physiologie 1906, 4: 132–164.

    Google Scholar 

  60. Bollmann A, Kanuru NK, McTeague KK, Walter PF, DeLurgio DB, Langberg JJ: Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. American Journal of Cardiology 1998,81(12):1439-1445. 10.1016/S0002-9149(98)00210-0

    Article  Google Scholar 

  61. Holm M, Pehrson S, Ingemansson M, et al.: Non-invasive assessment of the atrial cycle length during atrial fibrillation in man: introducing, validating and illustrating a new ECG method. Cardiovascular Research 1998,38(1):69-81. 10.1016/S0008-6363(97)00289-7

    Article  Google Scholar 

  62. Slocum J, Sahakian A, Swiryn S: Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. Journal of Electrocardiology 1992,25(1):1-8. 10.1016/0022-0736(92)90123-H

    Article  Google Scholar 

  63. Raine D, Langley P, Murray A, Dunuwille A, Bourke JP: Surface atrial frequency analysis in patients with atrial fibrillation: a tool for evaluating the effects of intervention. Journal of Cardiovascular Electrophysiology 2004,15(9):1021-1026. 10.1046/j.1540-8167.2004.04032.x

    Article  Google Scholar 

  64. Castells F, Mora C, Rieta JJ, Moratal-Pérez D, Millet J: Estimation of atrial fibrillatory wave from single-lead atrial fibrillation electrocardiograms using principal component analysis concepts. Medical and Biological Engineering and Computing 2005,43(5):557-560. 10.1007/BF02351028

    Article  Google Scholar 

  65. Mora C, Castells J, Ruiz R, et al.: Prediction of spontaneous termination of atrial fibrillation using time frequency analysis of the atrial fibrillatory wave. Proceedings of Computers in Cardiology (CIC '04), September 2004, Chicago, Ill, USA 31: 109–112.

    Google Scholar 

  66. Hyvärinen A, Karhunen J, Oja E: Independent Component Analysis. John Wiley & Sons, New York, NY, USA; 2001.

    Book  Google Scholar 

  67. Castells F, Rieta JJ, Millet J, Zarzoso V: Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias. IEEE Transactions on Biomedical Engineering 2005,52(2):258-267. 10.1109/TBME.2004.840473

    Article  Google Scholar 

  68. Raine D, Langley P, Murray A, Furniss SS, Bourke JP: Surface atrial frequency analysis in patients with atrial fibrillation: assessing the effects of linear left atrial ablation. Journal of Cardiovascular Electrophysiology 2005,16(8):838-844. 10.1111/j.1540-8167.2005.40456.x

    Article  Google Scholar 

  69. Haissaguerre M, Sanders P, Hocini M, et al.: Changes in atrial fibrillation cycle length and inducibility during catheter ablation and their relation to outcome. Circulation 2004,109(24):3007-3013. 10.1161/01.CIR.0000130645.95357.97

    Article  Google Scholar 

  70. Lux RL, Evans AK, Burgess MJ, Wyatt RF, Abildskov JA: Redundancy reduction for improved display and analysis of body surface potential maps. I. Spatial compression. Circulation Research 1981,49(1):186-196.

    Article  Google Scholar 

  71. Uijen GJH, Heringa A, van Oosterom A: Data reduction of body surface potential maps by means of orthogonal expansions. IEEE Transactions on Biomedical Engineering 1984,31(11):706-714.

    Article  Google Scholar 

  72. Kozmann G, Green LS, Lux RL: Nonparametric identification of discriminative information in body surface maps. IEEE Transactions on Biomedical Engineering 1991,38(11):1061-1068. 10.1109/10.99069

    Article  Google Scholar 

  73. Kornreich F, Rautaharju PM, Warren JW, Horacek BM, Dramaix M: Effective extraction of diagnostic ECG waveform information using orthonormal basis functions derived from body surface potential maps. Journal of Electrocardiology 1985,18(4):341-350. 10.1016/S0022-0736(85)80016-9

    Article  Google Scholar 

  74. Gardner MJ, Montague TJ, Armstrong S, Horacek BM, Smith E: Vulnerability to ventricular arrhythmia: assessment by mapping of body surface potential. Circulation 1986,73(4):684-692. 10.1161/01.CIR.73.4.684

    Article  Google Scholar 

  75. Hubley-Kozey CL, Mitchell LB, Gardner MJ, et al.: Spatial features in body-surface potential maps can identify patients with a history of sustained ventricular tachycardia. Circulation 1995,92(7):1825-1838.

    Article  Google Scholar 

  76. Bailón R, Olmos S, Horacek BM, Laguna P: Identification of patients at risk for ventricular tachycardia by means of body surface potential maps. Proceedings of the 30th Annual Computers in Cardiology (CIC '03), September 2003, Thessaloniki, Greece 30: 217–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Castells.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Castells, F., Laguna, P., Sörnmo, L. et al. Principal Component Analysis in ECG Signal Processing. EURASIP J. Adv. Signal Process. 2007, 074580 (2007). https://doi.org/10.1155/2007/74580

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/74580

Keywords