- Research Article
- Open access
- Published:
Principal Component Analysis in ECG Signal Processing
EURASIP Journal on Advances in Signal Processing volume 2007, Article number: 074580 (2007)
Abstract
This paper reviews the current status of principal component analysis in the area of ECG signal processing. The fundamentals of PCA are briefly described and the relationship between PCA and Karhunen-Loève transform is explained. Aspects on PCA related to data with temporal and spatial correlations are considered as adaptive estimation of principal components is. Several ECG applications are reviewed where PCA techniques have been successfully employed, including data compression, ST-T segment analysis for the detection of myocardial ischemia and abnormalities in ventricular repolarization, extraction of atrial fibrillatory waves for detailed characterization of atrial fibrillation, and analysis of body surface potential maps.
References
Joliffe IT: Principal Component Analysis. Springer, New York, NY, USA; 2002.
Callaerts D, De Moore B, Vandewalle J, Sansen W, Vantrappen G, Janssens J: Comparison of SVD methods to extract the foetal electrocardiogram from cutaneous electrode signals. Medical and Biological Engineering and Computing 1990,28(3):217-224. 10.1007/BF02442670
Uijen GJH, van Oosterom A: The filtering of multilead ECGs by means of the singular value decomposition. Proceedings of the 18th Annual Conference on Computers in Cardiology (CIC '91), September 1991, Venice, Italy 137–140.
Kanjilal PP, Palit S, Saha G: Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Transactions on Biomedical Engineering 1997,44(1):51-59. 10.1109/10.553712
Acar B, Köymen H: SVD-based on-line exercise ECG signal orthogonalization. IEEE Transactions on Biomedical Engineering 1999,46(3):311-321. 10.1109/10.748984
Paul JS, Reddy MR, Kumar VJ: A transform domain SVD filter for suppression of muscle noise artefacts in exercise ECG's. IEEE Transactions on Biomedical Engineering 2000,47(5):654-663. 10.1109/10.841337
De Lathauwer L, De Moor B, Vandewalle J: SVD-based methodologies for fetal electrocardiogram extraction. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '00), June 2000, Istanbul, Turkey 6: 3771–3774.
Priori SG, Mortara DW, Napolitano C, et al.: Evaluation of the spatial aspects of T-wave complexity in the long-QT syndrome. Circulation 1997,96(9):3006-3012.
Okin PM, Devereux RB, Fabsitz RR, Lee ET, Galloway JM, Howard BV: Principal component analysis of the T wave and prediction of cardiovascular mortality in American Indians: the strong heart study. Circulation 2002,105(6):714-719. 10.1161/hc0602.103585
Sörnmo L, Laguna P: Bioelectrical Signal Processing in Cardiac and Neurological Applications. Elsevier/Academic Press, Amsterdam, The Netherlands; 2005.
Ahmed N, Rao KR: Orthogonal Transforms for Digital Signal Processing. Springer, New York, NY, USA; 1975.
Gerbrands JJ: On the relationships between SVD, KLT and PCA. Pattern Recognition 1981,14(1–6):375-381.
Golub GH, van Loan CF: Matrix Computations. 2nd edition. The Johns Hopkins University Press, Baltimore, Md, USA; 1989.
Olmos S, Martínez JP, Sörnmo L: Spatio-temporal linear expansions for repolarization analysis. Proceedings of Computers in Cardiology (CIC '02), September 2002, Memphis, TN, USA 29: 689–692.
Moon T, Stirling W: Mathematical Methods and Algorithms for Signal Processing. Prentice-Hall, Upper Saddle River, NJ, USA; 2000.
Laguna P, Jané R, Meste O, et al.: Adaptive filter for event-related bioelectric signals using an impulse correlated reference input: comparison with signal averaging techniques. IEEE Transactions on Biomedical Engineering 1992,39(10):1032-1044. 10.1109/10.161335
Laguna P, Jané R, Masgrau E, Caminal P: The adaptive linear combiner with a periodic-impulse reference input as a linear comb filter. Signal Processing 1996,48(3):193-203. 10.1016/0165-1684(95)00135-2
Chan FHY, Lam FK, Poon PWF, Qiu W: Detection of brainstem auditory evoked potential by adaptive filtering. Medical and Biological Engineering and Computing 1995,33(1):69-75. 10.1007/BF02522949
Parsa V, Parker PA: Multireference adaptive noise cancellation applied to somatosensory evoked potentials. IEEE Transactions on Biomedical Engineering 1994,41(8):792-800. 10.1109/10.310094
Vaz CA, Thakor NV: Adaptive Fourier estimation of time-varying evoked potentials. IEEE Transactions on Biomedical Engineering 1989,36(4):448-455. 10.1109/10.18751
Olmos S, Sörnmo L, Laguna P: Block adaptive filters with deterministic reference inputs for event-related signals: BLMS and BRLS. IEEE Transactions on Signal Processing 2002,50(5):1102-1112. 10.1109/78.995066
Hamilton DJ, Sandham WA, McQueen J, Blanco A: Electrocardiogram data compression by estimation of higher-index principal components. EURASIP Journal on Applied Signal Processing 1998,5(1):49-58.
García J, Olmos S, Moody GB, Mark RG, Laguna P: Adaptive estimation of Karhunen-Loève series applied to the study of ischemic ECG records. Proceedings of Computers in Cardiology (CIC '96), September 1996, Indianapolis, Ind, USA 249–252.
Diamantaras KI, Kung SY: Principal Component Neural Networks: Theory and Applications. John Wiley & Sons, New York, NY, USA; 1996.
Stamkopoulos T, Diamantaras K, Maglaveras N, Strintzis M: ECG analysis using nonlinear PCA neural networks for ischemia detection. IEEE Transactions on Signal Processing 1998,46(11):3058-3067. 10.1109/78.726818
Karlsson S: Representation of ECG records by Karhunen-Loève expansions. Proceedings of the 7th International Conference on Medical & Biological Engineering, August 1967, Stockholm, Sweden 105.
Ahmed N, Milne PJ, Harris SG: Electrocardiographic data compression via orthogonal transforms. IEEE Transactions on Biomedical Engineering 1975,22(6):484-487.
Evans AK, Lux RL, Burgess MJ, Wyatt RF, Abildskov JA: Redundancy reduction for improved display and analysis of body surface potential maps. II. Temporal compression. Circulation Research 1981,49(1):197-203.
Womble ME, Halliday JS, Mitter SK, Lancaster MC, Triebwasser JH: Data compression for storing and transmitting ECG's/VCG's. Proceedings of the IEEE 1977,65(5):702-706.
Degani R, Bortolan G, Murolo R: Karhunen-Loève coding of ECG signals. Proceedings of Computers in Cardiology (CIC '90), September 1990, Chicago, Ill, USA 395–398.
Olmos S, Millán M, García J, Laguna P: ECG data compression with the Karhunen-Loève transform. Proceedings of Computers in Cardiology (CIC '96), September 1996, Indianapolis, Ind, USA 253–256.
Blanchett T, Kember GC, Fenton GA: KLT-based quality controlled compression of single-lead ECG. IEEE Transactions on Biomedical Engineering 1998,45(7):942-945. 10.1109/10.686803
Hamilton DJ, McQueen J, Sandham WA: Improved PCA-based electrocardiogram data compression using variable-length asymmetric beat vectors. EURASIP Journal on Applied Signal Processing 1999,6(4):194-202.
Laguna P, Moody GB, García J, Goldberger AL, Mark RG: Analysis of the ST-T complex of the electrocardiogram using the Karhunen-Loève transform: adaptive monitoring and alternans detection. Medical and Biological Engineering and Computing 1999,37(2):175-189. 10.1007/BF02513285
Zigel Y, Cohen A, Katz A: ECG signal compression using analysis by synthesis coding. IEEE Transactions on Biomedical Engineering 2000,47(10):1308-1316. 10.1109/10.871403
Zigel Y, Cohen A, Katz A: The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Transactions on Biomedical Engineering 2000,47(11):1422-1430. 10.1109/TBME.2000.880093
Bradie B: Wavelet packet-based compression of single lead ECG. IEEE Transactions on Biomedical Engineering 1996,43(5):493-501. 10.1109/10.488797
Çetin AE, Köymen H, Aydin MC: Multichannel ECG data compression by multirate signal processing and transform domain coding techniques. IEEE Transactions on Biomedical Engineering 1993,40(5):495-499. 10.1109/10.243411
Olmos S, Laguna P: Multi-lead ECG data compression with orthogonal expansions: KLT and wavelet packets. Proceedings of Computers in Cardiology (CIC '99), September 1999, Hannover, Germany 539–542.
Jager FJ, Mark RG, Moody G, Divjak S: Analysis of transient ST segment changes during ambulatory monitoring using the Karhunen-Loève transform. Proceedings of Computers in Cardiology (CIC '92), October 1992, Durham, NC, USA 691–694.
García J, Lander P, Sörnmo L, Olmos S, Wagner G, Laguna P: Comparative study of local and Karhunen-Loève-based ST-T indexes in recordings from human subjects with induced myocardial ischemia. Computers and Biomedical Research 1998,31(4):271-292. 10.1006/cbmr.1998.1481
García J, Wagner G, Sörnmo L, Olmos S, Lander P, Laguna P: Temporal evolution of traditional versus transformed ECG-based indexes in patients with induced myocardial ischemia. Journal of Electrocardiology 2000,33(1):37-47. 10.1016/S0022-0736(00)80099-0
García J, Sörnmo L, Olmos S, Laguna P: Automatic detection of ST-T complex changes on the ECG using filtered RMS difference series: application to ambulatory ischemia monitoring. IEEE Transactions on Biomedical Engineering 2000,47(9):1195-1201. 10.1109/10.867943
García J, Wagner G, Sörnmo L, Lander P, Laguna P: Identification of the occluded artery in patients with myocardial ischemia induced by prolonged percutaneous transluminal coronary angioplasty using traditional vs transformed ECG-based indexes. Computers and Biomedical Research 1999,32(5):470-482. 10.1006/cbmr.1999.1520
García J, Åström M, Mendive J, Laguna P, Sörnmo L: ECG-based detection of body position changes in ischemia monitoring. IEEE Transactions on Biomedical Engineering 2003,50(6):677-685. 10.1109/TBME.2003.812208
Zabel M, Malik M, Hnatkova K, et al.: Analysis of T-wave morphology from the 12-lead electrocardiogram for prediction of long-term prognosis in male US veterans. Circulation 2002,105(9):1066-1070. 10.1161/hc0902.104598
Bazett HC: An analysis of the time relations of electrocardiograms. Heart 1920, 7: 353–370.
Pueyo E, Smetana P, Caminal P, Bayes de Luna A, Malik M, Laguna P: Characterization of QT interval adaptation to RR interval changes and its use as a risk-stratifier of arrhythmic mortality in amiodarone-treated survivors of acute myocardial infarction. IEEE Transactions on Biomedical Engineering 2004,51(9):1511-1520. 10.1109/TBME.2004.828050
Day CP, McComb JM, Campbell RWF: QT dispersion: an indication of arrhythmia risk in patients with long QT intervals. British Heart Journal 1990,63(6):342-344. 10.1136/hrt.63.6.342
Malik M, Acar B, Gang Y, Yap YG, Hnatkova K, Camm AJ: QT dispersion does not represent electrocardiographic interlead heterogeneity of ventricular repolarization. Journal of Cardiovascular Electrophysiology 2000,11(8):835-843. 10.1111/j.1540-8167.2000.tb00061.x
Smetana P, Batchvarov VN, Hnatkova K, Camm AJ, Malik M: Ventricular gradient and nondipolar repolarization components increase at higher heart rate. American Journal of Physiology: Heart and Circulatory Physiology 2004,286(1):H131-H136.
Acar B, Yi G, Hnatkova K, Malik M: Spatial, temporal and wavefront direction characteristics of 12-lead T-wave morphology. Medical and Biological Engineering and Computing 1999,37(5):574-584. 10.1007/BF02513351
Arini PD, Valverde ER, Bertran GC, Laguna P: Geometrical and temporal ECG features for quantification of increased ventricular repolarization dispersion in an experimental heart rabbit model. Proceedings of Computers in Cardiology (CIC '05), September 2005, Lyon, France 89–92.
Smith JM, Clancy EA, Valeri CR, Ruskin JN, Cohen RJ: Electrical alternans and cardiac electrical instability. Circulation 1988,77(1):110-121. 10.1161/01.CIR.77.1.110
Martínez JP, Olmos S: Methodological principles of T wave alternans analysis: a unified framework. IEEE Transactions on Biomedical Engineering 2005,52(4):599-613. 10.1109/TBME.2005.844025
Laguna P, Ruiz M, Moody GB, Mark RG: Repolarization alternans detection using the KL transform and the beatquency spectrum. Proceedings of Computers in Cardiology (CIC '96), September 1996, Indianapolis, Ind, USA 673–676.
Fuster V, Rydén LE, Asinger RW, et al.: ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation: executive summary a report of the American College of Cardiology/American Heart Association task force on practice guidelines and the European Society of Cardiology committee for practice guidelines and policy conferences (committee to develop guidelines for the management of patients with atrial fibrillation) developed in collaboration with the North American Society of pacing and electrophysiology . Circulation 2001,104(17):2118-2150.
Bollmann A: First comes diagnosis then comes treatment: an underappreciated paradigm in atrial fibrillation management. European Heart Journal 2005,26(23):2487-2489. 10.1093/eurheartj/ehi578
Einthoven W: Le télécardiogramme. Archives Internationales de Physiologie 1906, 4: 132–164.
Bollmann A, Kanuru NK, McTeague KK, Walter PF, DeLurgio DB, Langberg JJ: Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. American Journal of Cardiology 1998,81(12):1439-1445. 10.1016/S0002-9149(98)00210-0
Holm M, Pehrson S, Ingemansson M, et al.: Non-invasive assessment of the atrial cycle length during atrial fibrillation in man: introducing, validating and illustrating a new ECG method. Cardiovascular Research 1998,38(1):69-81. 10.1016/S0008-6363(97)00289-7
Slocum J, Sahakian A, Swiryn S: Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. Journal of Electrocardiology 1992,25(1):1-8. 10.1016/0022-0736(92)90123-H
Raine D, Langley P, Murray A, Dunuwille A, Bourke JP: Surface atrial frequency analysis in patients with atrial fibrillation: a tool for evaluating the effects of intervention. Journal of Cardiovascular Electrophysiology 2004,15(9):1021-1026. 10.1046/j.1540-8167.2004.04032.x
Castells F, Mora C, Rieta JJ, Moratal-Pérez D, Millet J: Estimation of atrial fibrillatory wave from single-lead atrial fibrillation electrocardiograms using principal component analysis concepts. Medical and Biological Engineering and Computing 2005,43(5):557-560. 10.1007/BF02351028
Mora C, Castells J, Ruiz R, et al.: Prediction of spontaneous termination of atrial fibrillation using time frequency analysis of the atrial fibrillatory wave. Proceedings of Computers in Cardiology (CIC '04), September 2004, Chicago, Ill, USA 31: 109–112.
Hyvärinen A, Karhunen J, Oja E: Independent Component Analysis. John Wiley & Sons, New York, NY, USA; 2001.
Castells F, Rieta JJ, Millet J, Zarzoso V: Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias. IEEE Transactions on Biomedical Engineering 2005,52(2):258-267. 10.1109/TBME.2004.840473
Raine D, Langley P, Murray A, Furniss SS, Bourke JP: Surface atrial frequency analysis in patients with atrial fibrillation: assessing the effects of linear left atrial ablation. Journal of Cardiovascular Electrophysiology 2005,16(8):838-844. 10.1111/j.1540-8167.2005.40456.x
Haissaguerre M, Sanders P, Hocini M, et al.: Changes in atrial fibrillation cycle length and inducibility during catheter ablation and their relation to outcome. Circulation 2004,109(24):3007-3013. 10.1161/01.CIR.0000130645.95357.97
Lux RL, Evans AK, Burgess MJ, Wyatt RF, Abildskov JA: Redundancy reduction for improved display and analysis of body surface potential maps. I. Spatial compression. Circulation Research 1981,49(1):186-196.
Uijen GJH, Heringa A, van Oosterom A: Data reduction of body surface potential maps by means of orthogonal expansions. IEEE Transactions on Biomedical Engineering 1984,31(11):706-714.
Kozmann G, Green LS, Lux RL: Nonparametric identification of discriminative information in body surface maps. IEEE Transactions on Biomedical Engineering 1991,38(11):1061-1068. 10.1109/10.99069
Kornreich F, Rautaharju PM, Warren JW, Horacek BM, Dramaix M: Effective extraction of diagnostic ECG waveform information using orthonormal basis functions derived from body surface potential maps. Journal of Electrocardiology 1985,18(4):341-350. 10.1016/S0022-0736(85)80016-9
Gardner MJ, Montague TJ, Armstrong S, Horacek BM, Smith E: Vulnerability to ventricular arrhythmia: assessment by mapping of body surface potential. Circulation 1986,73(4):684-692. 10.1161/01.CIR.73.4.684
Hubley-Kozey CL, Mitchell LB, Gardner MJ, et al.: Spatial features in body-surface potential maps can identify patients with a history of sustained ventricular tachycardia. Circulation 1995,92(7):1825-1838.
Bailón R, Olmos S, Horacek BM, Laguna P: Identification of patients at risk for ventricular tachycardia by means of body surface potential maps. Proceedings of the 30th Annual Computers in Cardiology (CIC '03), September 2003, Thessaloniki, Greece 30: 217–220.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Castells, F., Laguna, P., Sörnmo, L. et al. Principal Component Analysis in ECG Signal Processing. EURASIP J. Adv. Signal Process. 2007, 074580 (2007). https://doi.org/10.1155/2007/74580
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/74580