Skip to content

Advertisement

  • Research Article
  • Open Access

Comparison of Feature-List Cross-Correlation Algorithms with Common Cross-Correlation Algorithms

EURASIP Journal on Advances in Signal Processing20072007:089150

https://doi.org/10.1155/2007/89150

  • Received: 1 August 2005
  • Accepted: 21 December 2006
  • Published:

Abstract

This paper presents a feature-list cross-correlation algorithm based on: a common feature extraction algorithm, a transformation of the results into a feature-list representation form, and a list-based cross-correlation algorithm. The feature-list cross-correlation algorithms are compared with known results of the common cross-correlation algorithms. Therefore, simple test images containing different objects under changing image conditions and with several image distortions are used. In addition, a medical application is used to verify the results. The results are analyzed by means of curve progression of coefficients and curve progression of peak signal-to-noise ratio (PSNR). As a result, the presented feature list cross-correlation algorithms are sensitive to all changes of image conditions. Therefore, it is possible to separate objects that are similar but not equal. Because of the high quantity of feature points and the strong PSNR, the loss of a few feature points does not have a significant influence on the detection results. These results are confirmed by a successfully applied medical application. The calculation time of the feature list cross-correlation algorithms only depends on the length of the feature-lists. The amount of feature points is much less than the number of pixels in the image. Therefore, the feature-list cross-correlation algorithms are faster than common cross-correlation algorithms. Better image conditions tend to reduce the size of the feature-list. Hence, the processing time decreases considerably.

Keywords

  • Processing Time
  • Feature Extraction
  • Quantum Information
  • Feature Point
  • Test Image

[12345678910111213141516171819202122232425262728293031323334353637383940]

Authors’ Affiliations

(1)
Institute of Biomedical Engineering and Informatics, Ilmenau Technical University, P.O. Box 100565, Ilmenau, 98693, Germany
(2)
Department of Audiology, University Hospital of Erlangen-Nuremberg, Waldstr. 1, Erlangen, 91054, Germany

References

  1. Burt PJ, Yen C, Xu X: Local correlation measures for motion analysis, a comparative study. Proceedings of IEEE Computer Society Conference on Pattern Recognition and Image Processing, June 1982, Las Vegas, Nev, USA 269-274.Google Scholar
  2. Wesley E, Snyder WE, Qi H: Machine Vision. Cambridge University Press, Cambridge, UK; 2004.MATHGoogle Scholar
  3. Huang S-Y, Tsai W-C: A simple and efficient block motion estimation algorithm based on full-search array architecture. Signal Processing: Image Communication 2004,19(10):975-992. 10.1016/j.image.2004.08.001Google Scholar
  4. Lohweg V, Diederichs C, Müller D: Algorithms for hardware-based pattern recognition. EURASIP Journal on Applied Signal Processing 2004,2004(12):1912-1920. 10.1155/S1110865704404247View ArticleGoogle Scholar
  5. Töreyin BU, Çetin AE, Aksay A, Akhan MB: Moving object detection in wavelet compressed video. Signal Processing: Image Communication 2005,20(3):255-264. 10.1016/j.image.2004.12.002Google Scholar
  6. Förstner W: A feature based correspondence algorithm for image matching. Proceedings of International Archives of Photogrammetry and Remote Sensing Symposium (ISP Commission III), 1986, Rovaniemi, Finland 26(3/3): 150-166.Google Scholar
  7. Maschotta R, Boymann S, Steuer D: Shift reducing of retinal vessel image series by using edge based template matching algorithm. Proceedings of the 2nd European Medical and Biological Engineering Conference (EMBEC '02), December 2002, Vienna, Austria 848-849.Google Scholar
  8. Mori S, Nishida H, Yamada H: Optical Character Recognition. John Wiley & Sons, New York, NY, USA; 1999.Google Scholar
  9. Tankus A, Yeshurun Y: Scene-consistent detection of feature points in video sequences. Computer Vision and Image Understanding 2005,97(1):1-29. 10.1016/j.cviu.2004.05.003View ArticleGoogle Scholar
  10. Yang C-HT, Lai S-H, Chang L-W: Robust face image matching under illumination variations. EURASIP Journal on Applied Signal Processing 2004,2004(16):2533-2543. 10.1155/S1110865704410014MathSciNetView ArticleMATHGoogle Scholar
  11. Gui-Guang D, Bao-Long G: Motion vector estimation using line-square search block matching algorithm for video sequences. EURASIP Journal on Applied Signal Processing 2004,2004(11):1750-1756. 10.1155/S1110865704402273View ArticleGoogle Scholar
  12. Barbarien J, Munteanu A, Verdicchio F, Andreopoulos Y, Cornelis J, Schelkens P: Motion and texture rate-allocation for prediction-based scalable motion-vector coding. Signal Processing: Image Communication 2005,20(4):315-342. 10.1016/j.image.2004.12.006Google Scholar
  13. Arivazhagan S, Ganesan L: Automatic target detection using wavelet transform. EURASIP Journal on Applied Signal Processing 2004,2004(17):2663-2674. 10.1155/S1110865704408208View ArticleMATHGoogle Scholar
  14. Cideciyan AV: Registration of ocular fundus images: an algorithm using cross-correlation of triple invariant image descriptors. IEEE Engineering in Medicine and Biology Magazine 1995,14(1):52-58. 10.1109/51.340749View ArticleGoogle Scholar
  15. Laliberté F, Gagnon L, Sheng Y: Registration and fusion of retinal images-an evaluation study. IEEE Transactions on Medical Imaging 2003,22(5):661-673. 10.1109/TMI.2003.812263View ArticleGoogle Scholar
  16. Traver VJ, Pla F: Similarity motion estimation and active tracking through spatial-domain projections on log-polar images. Computer Vision and Image Understanding 2005,97(2):209-241. 10.1016/j.cviu.2004.07.007View ArticleGoogle Scholar
  17. Stiller C, Konrad J: Estimating motion in image sequences, a tutorial on modeling and computation of 2D motion. IEEE Signal Processing Magazine 1999,16(4):70-91. 10.1109/79.774934View ArticleGoogle Scholar
  18. Deans SR: Hough transform from the radon transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 1981,3(2):185-188.View ArticleGoogle Scholar
  19. Princen J, Illingworth J, Kittler J: A formal definition of the hough transform: properties and relationships. Journal of Mathematical Imaging and Vision 1992,1(2):153-168. 10.1007/BF00122210View ArticleGoogle Scholar
  20. Jähne B: Digital Image Processing. 6th, revised and extended edition. Springer, Berlin, Germany; 2005.MATHGoogle Scholar
  21. Sonka M, Hlavac V, Boyle R: Image Processing, Analysis, and Machine Vision. PWS, Pacific Grove, Calif, USA; 1999.Google Scholar
  22. Maschotta R, Boymann S, Hoppe U: Regelbasierte kantenerkennung zur schnellen kantenbasierten segmentierung der glottis in hochgeschwindigkeitsvideos. In Bildverarbeitung für die Medizin. Springer, Berlin, Germany; 2005:188-192.Google Scholar
  23. Maschotta R, Rehs J, Boymann S, Hoppe U: Evaluation of feature extraction algorithms for the feature-list cross-correlation in retinal images. Proceedings of the 3rd European Medical and Biological Engineering Conference, November 2005, Prague, Czech RepublicGoogle Scholar
  24. Hansen KV, Toft PA: Fast curve estimation using preconditioned generalized radon transform. IEEE Transactions on Image Processing 1996,5(12):1651-1661. 10.1109/83.544572View ArticleGoogle Scholar
  25. Radon J: Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten. Berichte Schsische Akademie der Wissenschaften. Leipzig, Mathematisch-Naturwissenschaftliche Klasse 1917, 69: 262-277.MATHGoogle Scholar
  26. Beyerer J, León FP: Die radontransformation in der digitalen bildverarbeitung. Automatisierungstechnik 2002, 50: 472-480. 10.1524/auto.2002.50.10.472View ArticleGoogle Scholar
  27. Olson CF: Constrained hough transforms for curve detection. Computer Vision and Image Understanding 1999,73(3):329-345. 10.1006/cviu.1998.0728View ArticleMATHGoogle Scholar
  28. Guil N, Gonzalez-Linares JM, Zapata EL: Bidimensional shape detection using an invariant approach. Pattern Recognition 1999,32(6):1025-1038. 10.1016/S0031-3203(98)00127-7View ArticleGoogle Scholar
  29. Hough PVC: A method and means for recognizing complex patterns. US patent 3,069,654, 1962Google Scholar
  30. Canny J: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1986,8(6):679-698.View ArticleGoogle Scholar
  31. Förstner W, Gülch E: A fast operator for detection and precise location of distinct points, corners and centres of circular features. Proceedings of ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, June 1987, Interlaken, Switzerland 281-305.Google Scholar
  32. Harris C, Stephens M: A combined corner and edge detector. Proceedings of the 4th Alvey Vision Conference, August-September 1988, Manchester, UK 147-151.Google Scholar
  33. Köthe U: Edge and junction detection with an improved structure tensor. Pattern Recognition, Proceedings of 25th DAGM Symposium, September 2003, Magdeburg, Germany, Lecture Notes in Computer Science 2781: 25-32.Google Scholar
  34. Intel Open source computer vision library, reference manual, 2001, http://www.intel.com
  35. Lewis JP: Fast normalized cross-correlation. Proceedings of Vision Interface (VI '95), May 1995, Quebec, Canada 120-123.Google Scholar
  36. Theodoridis S, Koutroumbas K: Pattern Recognition. Academic Press, New York, NY, USA; 1999.MATHGoogle Scholar
  37. Ravanbakhsh M: Designing and developing a fully automatic interior orientation method in a digital photogrammetric workstation. Proceedings of the 20th ISPRS Congress (Commision II), July 2004, Istanbul, Turkey 543-547.Google Scholar
  38. Maschotta R, Pietraszczyk M, Boymann S, Jannek D: Genauigkeit und generalisierbarkeit kantenlistenbasierter korrelationsverfahren im vergleich zu grauwertbasierten verfahren. In Bildverarbeitung für die Medizin. Springer, Berlin, Germany; 2004:110-114.Google Scholar
  39. Vilser W, Riemer T, Nagel E, Fink A: Functional imaging of retinal vessels - principle and clinical potential. Proceedings of the 38th Annual Congress of the German Society for Biomedical Engineering (BMT), September 2004, Ilmenau, GermanyGoogle Scholar
  40. Maschotta R, Boymann S, Lehmann S, Steuer D: Software architecture for modular, extensible and reusable signal processing components. Proceedings of Advances in Automation, Multimedia and Video Systems, and Modern Computer Science, 2001 304-308.Google Scholar

Copyright

© Ralph Maschotta et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement