Open Access

Low-Complexity Geometry-Based MIMO Channel Simulation

  • Florian Kaltenberger1Email author,
  • Thomas Zemen2 and
  • Christoph W. Ueberhuber3
EURASIP Journal on Advances in Signal Processing20072007:095281

https://doi.org/10.1155/2007/95281

Received: 30 September 2006

Accepted: 18 May 2007

Published: 1 July 2007

Abstract

The simulation of electromagnetic wave propagation in time-variant wideband multiple-input multiple-output mobile radio channels using a geometry-based channel model (GCM) is computationally expensive. Due to multipath propagation, a large number of complex exponentials must be evaluated and summed up. We present a low-complexity algorithm for the implementation of a GCM on a hardware channel simulator. Our algorithm takes advantage of the limited numerical precision of the channel simulator by using a truncated subspace representation of the channel transfer function based on multidimensional discrete prolate spheroidal (DPS) sequences. The DPS subspace representation offers two advantages. Firstly, only a small subspace dimension is required to achieve the numerical accuracy of the hardware channel simulator. Secondly, the computational complexity of the subspace representation is independent of the number of multipath components (MPCs). Moreover, we present an algorithm for the projection of each MPC onto the DPS subspace in operations. Thus the computational complexity of the DPS subspace algorithm compared to a conventional implementation is reduced by more than one order of magnitude on a hardware channel simulator with 14-bit precision.

[12345678910111213141516171819202122232425262728293031323334]

Authors’ Affiliations

(1)
Austrian Research Centers GmbH (ARC)
(2)
ftw. Forschungszentrum Telekommunikation Wien
(3)
Institute for Analysis and Scientific Computing, Vienna University of Technology

References

  1. Correia LM (Ed): Mobile Broadband Multimedia Networks Techniques, Models and Tools for 4G. Elsevier, New York, NY, USA; 2006.Google Scholar
  2. Kaltenberger F, Steinböck G, Kloibhofer R, Lieger R, Humer G: A multi-band development platform for rapid prototyping of MIMO systems. Proceedings of ITG Workshop on Smart Antennas, April 2005, Duisburg, Germany 1-8.Google Scholar
  3. Kolu J, Jamsa T: A real-time simulator for MIMO radio channels. Proceedings of the 5th International Symposium on Wireless Personal Multimedia Communications (WPMC '02), October 2002, Honolulu, Hawaii, USA 2: 568-572.View ArticleGoogle Scholar
  4. Azimuth Systems Inc : ACE 400NB MIMO channel emulator. Product Brief, 2006, http://www.azimuthsystems.com/files/public/PB_Ace400nb_final.pdfGoogle Scholar
  5. Spirent Communications Inc : SR5500 wireless channel emulator. Data Sheet, 2006, http://www.spirentcom.com/documents/4247.pdfGoogle Scholar
  6. Zemen T, Mecklenbräuker CF: Time-variant channel estimation using discrete prolate spheroidal sequences. IEEE Transactions on Signal Processing 2005,53(9):3597-3607.MathSciNetView ArticleGoogle Scholar
  7. Clarke R: A statistical theory of mobile-radio reception. The Bell System Technical Journal 1968,47(6):957-1000.View ArticleGoogle Scholar
  8. Jakes W: Microwave Mobile Communications. John Wiley & Sons, New York, NY, USA; 1974.Google Scholar
  9. Pätzold M, Laue F: Statistical properties of Jakes' fading channel simulator. Proceedings of the 48th IEEE Vehicular Technology Conference (VTC '98), May 1998, Ottawa, Canada 2: 712-718.Google Scholar
  10. Pop MF, Beaulieu NC: Limitations of sum-of-sinusoids fading channel simulators. IEEE Transactions on Communications 2001,49(4):699-708. 10.1109/26.917776View ArticleGoogle Scholar
  11. Dent P, Bottomley GE, Croft T: Jakes fading model revisited. Electronics Letters 1993,29(13):1162-1163. 10.1049/el:19930777View ArticleGoogle Scholar
  12. Li Y, Huang X: The simulation of independent Rayleigh faders. IEEE Transactions on Communications 2002,50(9):1503-1514. 10.1109/TCOMM.2002.802562View ArticleGoogle Scholar
  13. Zheng YR, Xiao C: Simulation models with correct statistical properties for Rayleigh fading channels. IEEE Transactions on Communications 2003,51(6):920-928. 10.1109/TCOMM.2003.813259View ArticleGoogle Scholar
  14. Zajić AG, Stüber GL: Efficient simulation of Rayleigh fading with enhanced de-correlation properties. IEEE Transactions on Wireless Communications 2006,5(7):1866-1875.View ArticleGoogle Scholar
  15. Zemen T, Mecklenbräuker C, Kaltenberger F, Fleury BH: Minimum-energy band-limited predictor with dynamic subspace selection for time-variant flat-fading channels. to appear in IEEE Transactions on Signal ProcessingGoogle Scholar
  16. Zemen T: OFDM multi-user communication over time-variant channels, Ph.D. dissertation.Google Scholar
  17. Slepian D: Prolate spheroidal wave functions, Fourier analysis, and uncertainty—V: the discrete case. The Bell System Technical Journal 1978,57(5):1371-1430.View ArticleMathSciNetMATHGoogle Scholar
  18. Thomson DJ: Spectrum estimation and harmonic analysis. Proceedings of the IEEE 1982,70(9):1055-1096.View ArticleGoogle Scholar
  19. Dharanipragada S, Arun KS: Bandlimited extrapolation using time-bandwidth dimension. IEEE Transactions on Signal Processing 1997,45(12):2951-2966. 10.1109/78.650256View ArticleGoogle Scholar
  20. Percival DB, Walden AT: Spectral Analysis for Physical Applications. Cambridge University Press, Cambridge, UK; 1963.MATHGoogle Scholar
  21. Kaltenberger F, Zemen T, Ueberhuber CW: Low complexity simulation of wireless channels using discrete prolate spheroidal sequences. Proceedings of the 5th Vienna International Conference on Mathematical Modelling (MATHMOD '06), February 2006, Vienna, AustriaGoogle Scholar
  22. Slepian D, Pollak HO: Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. The Bell System Technical Journal 1961,40(1):43-64.MathSciNetView ArticleMATHGoogle Scholar
  23. Papoulis A: Probability, Random Variables and Stochastic Processes. 3rd edition. McGraw-Hill, New York, NY, USA; 1991.MATHGoogle Scholar
  24. Holma H, Tskala A (Eds): WCDMA for UMTS. 2nd edition. John Wiley & Sons, New York, NY, USA; 2002.Google Scholar
  25. Steinbauer M, Molisch AF, Bonek E: The double-directional radio channel. IEEE Antennas and Propagation Magazine 2001,43(4):51-63. 10.1109/74.951559View ArticleGoogle Scholar
  26. Almers P, Bonek E, Burr A, et al.: Survey of channel and radio propagation models for wireless MIMO systems. EURASIP Journal on Wireless Communications and Networking 2007, 2007: 19 pages.View ArticleGoogle Scholar
  27. Members of 3GPP : Technical specification group radio access network; User Equipment (UE) radio transmission and reception (FDD). In Tech. Rep. 3GPP TS 25.101 version 6.4.0. 3GPP, Valbonne, France; 2004.Google Scholar
  28. Erceg V, Schumacher L, Kyritsi P, et al.: TGn channel models. Tech. Rep. IEEE P802.11 2004.Google Scholar
  29. Degli-Esposti V, Fuschini F, Vitucci EM, Falciasecca G: Measurement and modelling of scattering from buildings. IEEE Transactions on Antennas and Propagation 2007,55(1):143-153.View ArticleGoogle Scholar
  30. Pedersen T, Fleury BH: A realistic radio channel model based on stochastic propagation graphs. Proceedings of the 5th Vienna International Conference on Mathematical Modelling (MATHMOD '06), February 2006, Vienna, AustriaGoogle Scholar
  31. Norklit O, Andersen JB: Diffuse channel model and experimental results for array antennas in mobile environments. IEEE Transactions on Antennas and Propagation 1998,46(6):834-840. 10.1109/8.686770View ArticleGoogle Scholar
  32. Czink N, Bonek E, Yin X, Fleury B: Cluster angular spreads in a MIMO indoor propagation environment. Proceedings of the 16th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '05), September 2005, Berlin, Germany 1: 664-668.Google Scholar
  33. Kaltenberger F, Steinböck G, Humer G, Zemen T: Low-complexity geometry based MIMO channel emulation. Proceedings of European Conference on Antennas and Propagation (EuCAP '06), November 2006, Nice, FranceGoogle Scholar
  34. Moon TK, Stirling W: Mathematical Methods and Algorithms. Prentice-Hall, Upper Saddle River, NJ, USA; 2000.Google Scholar

Copyright

© Florian Kaltenberger et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.