Skip to main content

Power Spectral Density Error Analysis of Spectral Subtraction Type of Speech Enhancement Methods

Abstract

A theoretical framework for analysis of speech enhancement algorithms is introduced for performance assessment of spectral subtraction type of methods. The quality of the enhanced speech is related to physical quantities of the speech and noise (such as stationarity time and spectral flatness), as well as to design variables of the noise suppressor. The derived theoretical results are compared with the outcome of subjective listening tests as well as successful design strategies, performed by independent research groups.

References

  1. 1.

    Ohya T, Suda H, Miki T: 5.6 kbits/s PSI-CELP of the half-rate PDC speech coding standard. IEEE 44th Vehicular Technology Conference, June 1994, Stockholm, Sweden 3: 1680–1684.

    Google Scholar 

  2. 2.

    Ramabadran TV, Ashley JP, McLauglin MJ: Background noise suppression for speech enhancement and coding. Proceedings of the IEEE Workshop on Speech Coding for Telecommunications Proceeding, September 1997, Pocono Manor, Pa, USA 43–44.

    Google Scholar 

  3. 3.

    Yang J: Frequency domain noise suppression approaches in mobile telephone systems. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '93), April 1993, Minneapolis, Minn, USA 2: 363–366.

    Google Scholar 

  4. 4.

    Gibson JD, Koo B, Gray SD: Filtering of colored noise for speech enhancement and coding. IEEE Transactions on Signal Processing 1991,39(8):1732–1742. 10.1109/78.91144

    Article  Google Scholar 

  5. 5.

    Sörqvist P, Händel P, Ottersten B: Kalman filtering for low distortion speech enhancement in mobile communication. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '97), April 1997, Munich, Germany 2: 1219–1222.

    Google Scholar 

  6. 6.

    Vary P: Noise suppression by spectral magnitude estimation—mechanism and theoretical limits. Signal Processing 1985,8(4):387–400. 10.1016/0165-1684(85)90002-7

    Article  Google Scholar 

  7. 7.

    Händel P: Low-distortion spectral subtraction for speech enhancement. Proceedings of the 4th European Conference on Speech Communication and Technology, September 1995, Madrid, Spain 2: 1549–1552.

    Google Scholar 

  8. 8.

    Boll SF: Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech, and Signal Processing 1979,27(2):113–120. 10.1109/TASSP.1979.1163209

    Article  Google Scholar 

  9. 9.

    Cappe O: Elimination of the musical noise phenomenon with the Ephraim and Malah noise suppressor. IEEE Transactions on Speech and Audio Processing 1994,2(2):345–349. 10.1109/89.279283

    Article  Google Scholar 

  10. 10.

    Cappe O, Laroche J: Evaluation of short-time spectral attenuation techniques for the restoration of musical recordings. IEEE Transactions on Speech and Audio Processing 1995,3(1):84–93. 10.1109/89.365378

    Article  Google Scholar 

  11. 11.

    Hansen JHL, Clements MA: Constrained iterative speech enhancement with application to speech recognition. IEEE Transactions on Signal Processing 1991,39(4):795–805. 10.1109/78.80901

    Article  Google Scholar 

  12. 12.

    Lockwood P, Boudy J, Blanchet M: Non-linear spectral subtraction (NSS) and hidden Markov models for robust speech recognition in car noise environments. Proceedings of IEEE International Conference Acoustics, Speech, and Signal Processing (ICASSP '92), March 1992, San Francisco, Calif, USA I: 265–268.

    Google Scholar 

  13. 13.

    Wang DL, Lim JS: The unimportance of phase in speech enhancement. IEEE Transactions on Acoustics, Speech, and Signal Processing 1982,30(4):679–681. 10.1109/TASSP.1982.1163920

    Article  Google Scholar 

  14. 14.

    Wiener N: Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications, Principles of Electrical Engineering Series. MIT Press, Cambridge, Mass, USA; 1949.

    Google Scholar 

  15. 15.

    Lim JS, Oppenheim AV: Enhancement and bandwidth compression of noisy speech. Proceedings of the IEEE 1979,67(12):1586–1604.

    Article  Google Scholar 

  16. 16.

    Sim BL, Tong YC, Chang JS, Tan CT: A parametric formulation of the generalized spectral subtraction method. IEEE Transactions on Speech and Audio Processing 1998,6(4):328–336. 10.1109/89.701361

    Article  Google Scholar 

  17. 17.

    Sovka P, Pollak P, Kybic J: Extended spectral subtraction. Proceedings of the 5th European Conference on Speech Communication and Technology, September 1995, Trieste, Italy 963–966.

    Google Scholar 

  18. 18.

    Stoica P, Nehorai A: On the asymptotic distribution of exponentially weighted prediction error estimators. IEEE Transactions on Acoustics, Speech, and Signal Processing 1988,36(1):136–139. 10.1109/29.1504

    MathSciNet  Article  Google Scholar 

  19. 19.

    Stoica P, Moses R: Introduction to Spectral Analysis. Prentice Hall, Upper Saddle River, NJ, USA; 1997.

    Google Scholar 

  20. 20.

    Peeters TTJM, Ciftcioglu Ö: Statistics on exponential averaging of periodograms. IEEE Transactions on Signal Processing 1995,43(7):1631–1636. 10.1109/78.398724

    Article  Google Scholar 

  21. 21.

    Angeby J, Stoica P, Söderström T: Asymptotic statistical analysis of autoregressive frequency estimates. Signal Processing 1994,39(3):277–292. 10.1016/0165-1684(94)90090-6

    Article  Google Scholar 

  22. 22.

    Händel P, Stoica P, Söderström T: Asymptotic variance of the AR spectral estimator for noisy sinusoidal data. Signal Processing 1994,35(2):131–139. 10.1016/0165-1684(94)90041-8

    Article  Google Scholar 

  23. 23.

    Kushner WM, Goncharoff V, Wu C, Nguyen V, Damoulakis JN: The effects of subtractive-type speech enhancement/noise reduction algorithms on parameter estimation for improved recognition and coding in high noise environments. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '89), May 1989, Glasgow, Scotland 1: 211–214.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Händel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Händel, P. Power Spectral Density Error Analysis of Spectral Subtraction Type of Speech Enhancement Methods. EURASIP J. Adv. Signal Process. 2007, 096384 (2006). https://doi.org/10.1155/2007/96384

Download citation

Keywords

  • Spectral Density
  • Power Spectral Density
  • Performance Assessment
  • Power Spectral
  • Independent Research