- Research Article
- Open Access
- Published:
Online Estimation of Time-Varying Volatility Using a Continuous-Discrete LMS Algorithm
EURASIP Journal on Advances in Signal Processing volume 2008, Article number: 532760 (2008)
Abstract
The following paper addresses a problem of inference in financial engineering, namely, online time-varying volatility estimation. The proposed method is based on an adaptive predictor for the stock price, built from an implicit integration formula. An estimate for the current volatility value which minimizes the mean square prediction error is calculated recursively using an LMS algorithm. The method is then validated on several synthetic examples as well as on real data. Throughout the illustration, the proposed method is compared with both UKF and offline volatility estimation.
Publisher note
To access the full article, please see PDF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Lahalle, E., Baili, H. & Oksman, J. Online Estimation of Time-Varying Volatility Using a Continuous-Discrete LMS Algorithm. EURASIP J. Adv. Signal Process. 2008, 532760 (2008). https://doi.org/10.1155/2008/532760
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2008/532760
Keywords
- Information Technology
- Prediction Error
- Real Data
- Volatility
- Quantum Information