- Research Article
- Open Access

# Linear High-Order Distributed Average Consensus Algorithm in Wireless Sensor Networks

- Gang Xiong
^{1}and - Shalinee Kishore
^{1}Email author

**2010**:373604

https://doi.org/10.1155/2010/373604

© G. Xiong and S. Kishore. 2010

**Received:**23 November 2009**Accepted:**27 May 2010**Published:**27 June 2010

## Abstract

This paper presents a linear high-order *distributed average consensus* (DAC) algorithm for wireless sensor networks. The average consensus property and the convergence rate of the high-order DAC algorithm are analyzed. In particular, the convergence rate is determined by the spectral radius of a network topology-dependent matrix. Numerical results indicate that this simple linear high-order DAC algorithm can accelerate the convergence without additional communication overhead and reconfiguration of network topology.

## Keywords

- Convergence Rate
- Wireless Sensor Network
- Network Topology
- Spectral Radius
- Random Network

## 1. Introduction

The distributed average consensus (DAC) algorithm aims to provide distributed nodes in a network agreement on a common measurement, known at any one node as the local state information. As such, it has many relevant applications in wireless sensor networks [1, 2], for example, moving-object acquisition and tracking, habitat monitoring, reconnaissance, and surveillance. In the DAC approach, average consensus can be sufficiently reached within a connected network by averaging pair-wise local state information at network nodes. In [1], Olfati-Saber et al. established a theoretical framework for the analysis of consensus-based algorithms.

In this paper, we study a simple approach to improve the convergence rate of DAC algorithms in wireless sensor networks. The author of [3] demonstrates that the convergence rate of DAC can be increased by using the "small-world" phenomenon. This technique, however, needs to redesign the network topology based on "random rewiring". In [4], an extrapolation-based DAC approach is proposed; it utilizes a scalar epsilon algorithm to accelerate the convergence rate without extra communication cost. However, numerical results show that mean square error does not decrease monotonically with respect to iteration time, which may not be desirable in practical applications. In [5], the authors extend the concept of average consensus to a higher dimension one via the spatial point of view, where nodes are spatially grouped into two disjoint sets: leaders and sensors. Specifically, it is demonstrated that under appropriate conditions, the sensors' states converge to a linear combination of the leaders' states. Furthermore, multi-objective optimization (MOP) and Pareto optimality are utilized to solve the learning problem, where the goal is to minimize the error between the convergence state and the desired estimate subject to a targeted convergence rate. In [6], the authors introduce the concept of nonlinear DAC algorithm, where standard linear addition is replaced by a sine operation during local state update. The convergence rate of this nonlinear DAC algorithm is shown to be faster under appropriate weight designs.

In this paper, we apply the principles of high-order consensus to the distributed computation problem in wireless sensor networks. This simple linear high-order DAC requires no additional communication overhead and no reconfiguration of the network topology. Instead, it utilizes gathered data from earlier iterations to accelerate consensus. We study here the convergence property and convergence rate of the high-order DAC algorithm and show that its convergence rate is determined by the spectral radius of a network topology-dependent matrix. Moreover, numerical results indicate that the convergence rate can be greatly improved by storing and using past data.

This paper is outlined as follows. Section 2 provides background and system model for the high-order DAC algorithm. Section 3 discusses convergence analysis for this scheme. Simulation results are presented in Section 4, and conclusions are provided in Section 5.

## 2. Background and System Model

### 2.1. Linear High-Order DAC Algorithm

We assume a synchronized, time-invariant connected network. In each iteration of the -th order DAC algorithm, each node transmits a data packet to its neighbor which contains the local state information. Each node then processes and decodes the received message from its neighbors. After retrieving the state information, each node updates its local state using the weighted average of the current state between itself and its neighboring nodes as well as stored state information from the previous iterations of the algorithm.

where is the local state at node during iteration ; is the set of neighboring nodes that can communicate reliably with node ; is a constant step size; are predefined constants with and ; is a forgetting factor, such that . We assume initial conditions of the -th order DAC algorithm are , where is initial local state information for node . It is worth mentioning that when , the high-order DAC algorithm reduces to the (conventional) first-order DAC algorithm.

This linear high-order DAC algorithm can be regarded as a generalized version of DAC algorithm; it requires no additional communication cost and no reconfiguration of network topology. Compared to the conventional first-order DAC algorithm, with negligible increase in memory size and computation load in each sensor node, the convergence rate can be greatly improved with appropriate algorithm design. In [7], the authors propose an average consensus algorithm with improved convergence rate by considering a convex combination of conventional operation and linear predication. In particular, a special case of one step predication is presented for detailed analysis. We note that the major difference between the DAC algorithm in [7] and our proposed scheme is that we utilize stored state difference for high-order updating and show that optimal convergence rate can be significantly improved by this simple extension. Furthermore, we present explicitly the optimal convergence rate of second-order DAC algorithm in Section 3.2.

### 2.2. Network Model and Some Preliminaries

In the following, we model the wireless sensor network as an undirected graph (The convergence properties presented here can be easily extended for a directed graph. We omit this extension here.) , consisting of a set of nodes and a set of edges . Each edge is denoted as where and are two nodes connected by edge . We assume that the presence of an edge indicates that nodes and can communicate with each other reliably. We assume here a connected graph, that is, there exists a path connecting any pair of distinct nodes.

Given this network model, we denote as the adjacency matrix of such that if and otherwise. Next, let be the graph Laplacian matrix of which is defined as , where is the degree matrix of , and . Given this matrix , we have and , where and . Additionally, is a symmetric positive semidefinite matrix. And for a connected graph, the rank of is and its eigenvalues can be arranged in increasing order as [8].

with the initial conditions , where and denotes the identity matrix.

## 3. Convergence Analysis of High-Order DAC Algorithm

### 3.1. Average Consensus Property of High-Order DAC Algorithm

where
**,** and
denotes the
all-zero matrix. Then we have the following lemma:

Lemma 1.

The eigenvalues of agree with those of except that is replaced by .

Proof.

Thus, the eigenvalues of are and This completes the proof.

The average consensus property of the -th order DAC algorithm in wireless sensor networks is stated in the following theorem.

Theorem 1.

where denotes the spectral radius of a matrix.

Proof.

This completes the proof.

According to Theorem 1, we see that when this linear high-order DAC algorithm is employed in an undirected wireless sensor network, average consensus can be achieved asymptotically. We also note that our proposed high-order DAC algorithm relies heavily on local state information exchange between two or more nodes in the networks. Noisy links [10] and packet drop failures [11] will certainly affect the performance of our proposed high-order DAC algorithm. We will investigate these important issues in the future.

### 3.2. Convergence Rate for High-Order DAC Algorithm

One of the most important measures of any distributed, iterative algorithm is its convergence rate. As we show next, the convergence rate of the high-order DAC algorithm is determined by the spectral radius of , which is similar to the first-order DAC algorithm [1].

Given this dynamic of the disagreement vector, we note.

Lemma 2.

where denotes the norm of a vector.

Proof.

Let us define the error vector as which can be obtained from , where , and denotes the Kronecker product.

which is equivalent to (13). This completes the proof.

In practical applications, since the optimal and depend only on the network topology, a numerical solution can be obtained offline based on node deployment, and all design parameters can be flooded to the sensor nodes before they run the distributed algorithm. As we will show in the simulations, the optimal convergence rate can be greatly improved by this linear high-order DAC algorithm.

## 4. Simulation Results

In the following, we simulate networks in which the initial local state information of node is equally spaced (trends similar to the ones noted below were observed when initial local state information between nodes were arbitrary (e.g., when they were uniformly distributed over ). We use this fixed local state assumption here for comparison purposes) in , where . For the sake of simplicity, we only consider and for the higher-order DAC approach. In the simulations, we denote our proposed DAC algorithm as best constant (BC) high-order DAC algorithm and choose two types of ad hoc weights as comparison: maximum degree (MD) and metropolis hasting (MH) weights [13]. Furthermore, we assume and study the following two network topologies:

Case 1.

Case 2.

Random network with 16 nodes. The 16 nodes were randomly generated with uniform distribution over a unit square; two nodes were assumed connected if the distance between them was less than , a predefined threshold. One realization of such a network is shown in Figure 1(b).

## 5. Conclusions

In this paper, we present a linear high-order DAC algorithm to address the distributed computation problem in wireless sensor networks. Interestingly, the high-order DAC algorithm can be regarded as a spatial-temporal processing technique, where nodes in the network represent the spatial advantage, the high-order processing represents the temporal advantage, and the optimal convergence rate can be viewed as the diversity gain. In the future, we intend to investigate the effects of fading, link failure, and other practical conditions when utilizing the DAC algorithm in wireless sensor networks.

## Authors’ Affiliations

## References

- Olfati-Saber R, Fax JA, Murray RM: Consensus and cooperation in networked multi-agent systems.
*Proceedings of the IEEE*2007, 95(1):215-233.View ArticleGoogle Scholar - Xiao L, Boyd S: Fast linear iterations for distributed averaging.
*Proceedings of the 42nd IEEE Conference on Decision and Control, December 2003*5: 4997-5002.Google Scholar - Olfati-Saber R: Ultrafast consensus in small-world networks.
*Proceedings of the American Control Conference (ACC '05), June 2005*4: 2371-2378.Google Scholar - Kokiopoulou E, Frossard P: Accelerating distributed consensus using extrapolation.
*IEEE Signal Processing Letters*2007, 14(10):665-668.View ArticleGoogle Scholar - Khan UA, Kar S, Moura JMF: Higher dimensional consensus: learning in large-scale networks.
*IEEE Transactions on Signal Processing*2010, 58(5):2836-2849.MathSciNetView ArticleGoogle Scholar - Khan UA, Kar S, Moura JMF: Distributed average consensus: beyond the realm of linearity.
*Proceedings of the 43rd IEEE Asilomar Conference on Signals, Systems and Computers, November 2009*Google Scholar - Oreshkin BN, Aysal TC, Coates MJ: Distributed average consensus with increased convergence rate.
*Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '08), April 2008*2285-2288.Google Scholar - Horn RA, Johnson CR:
*Matrix Analysis*. Cambridge University Press, Cambridge, UK; 1985.View ArticleMATHGoogle Scholar - Meyer CD:
*Matrix Analysis and Applied Linear Algebra*. SIAM; 2001.Google Scholar - Xiao L, Boyd S, Kim S-J: Distributed average consensus with least-mean-square deviation.
*Journal of Parallel and Distributed Computing*2007, 67(1):33-46. 10.1016/j.jpdc.2006.08.010View ArticleMATHGoogle Scholar - Hatano Y, Mesbahi M: Agreement over random networks.
*IEEE Transactions on Automatic Control*2005, 50(11):1867-1872.MathSciNetView ArticleGoogle Scholar - Xiong G, Kishore S: Discrete-time second-order distributed consensus time synchronization algorithm for wireless sensor networks.
*EURASIP Journal on Wireless Communications and Networking*2009, 2009:-12.Google Scholar - Xiao L, Boyd S, Lall S: A scheme for robust distributed sensor fusion based on average consensus.
*Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN '05), April 2005*63-70.Google Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.