- Research Article
- Open Access

# A Stereo Crosstalk Cancellation System Based on the Common-Acoustical Pole/Zero Model

- Lin Wang
^{1, 2}Email author, - Fuliang Yin
^{1}and - Zhe Chen
^{1}

**2010**:719197

https://doi.org/10.1155/2010/719197

© Lin Wang et al. 2010

**Received:**8 January 2010**Accepted:**7 August 2010**Published:**11 August 2010

## Abstract

Crosstalk cancellation plays an important role in displaying binaural signals with loudspeakers. It aims to reproduce binaural signals at a listener's ears via inverting acoustic transfer paths. The crosstalk cancellation filter should be updated in real time according to the head position. This demands high computational efficiency for a crosstalk cancellation algorithm. To reduce the computational cost, this paper proposes a stereo crosstalk cancellation system based on common-acoustical pole/zero (CAPZ) models. Because CAPZ models share one set of common poles and process their zeros individually, the computational complexity of crosstalk cancellation is cut down dramatically. In the proposed method, the acoustic transfer paths from loudspeakers to ears are approximated with CAPZ models, then the crosstalk cancellation filter is designed based on the CAPZ transfer functions. Simulation results demonstrate that, compared to conventional methods, the proposed method can reduce computational cost with comparable crosstalk cancellation performance.

## Keywords

- Filter Length
- Inverse Filter
- Acoustic Path
- Acoustic Transfer
- Crosstalk Cancellation

## 1. Introduction

A 3D audio system can be used to position sounds around a listener so that the sounds are perceived to come from arbitrary points in space [1, 2]. This is not possible with classical stereo systems. Thus, 3D audio has the potential of increasing the sense of realism in music or movies. It can be of great benefit in virtual reality, augmented reality, remote video conference, or home entertainment. A 3D audio technique achieves virtual sound perception by synthesizing a pair of binaural signals from a monaural source signal with the provided 3D acoustic information: the distance and direction of the sound source with respect to the listener. Specifically, the sense of direction can be rendered by using head-related acoustic information, such as head-related transfer functions (HRTFs) which can be obtained by either experimental or theoretical means [3, 4]. To deliver binaural signals, the simplest way is through headphones. However, in many applications, for example, home entertainment environment, teleconferencing, and so forth, many listeners prefer not to wear headphones. If loudspeakers are used, the delivery of these binaural signals to the listener's ears is not straightforward. Each ear receives a so-called crosstalk component, moreover, the direct signals are distorted by room reverberation. To overcome the above problems, an inverse filter is required before playing binaural signals through loudspeakers.

The concept of crosstalk cancellation and equalization was introduced by Atal and schroeder [5] and Bauer [6] in the early 1960s. Many sophisticated crosstalk cancellation algorithms have been presented since then, using two or more loudspeakers for rendering binaural signals. Crosstalk cancellation can be realized directly or adaptively. Supposing that the acoustical transfer paths from loudspeakers to ears are known, the direct implementation method calculates the crosstalk cancellation filter by directly inverting the acoustical transfer functions [7, 8]. Generally a head-tracking scheme, which can tell the head position precisely, is employed to work together with the direct estimation method. The direct estimation method can be implemented in the time or frequency domain. Time-domain algorithms are generally computationally consuming, while frequency-domain algorithms have lower complexity. On the other hand, time-domain algorithms perform better than frequency-domain ones with the same crosstalk cancellation filter length. For example, a frequency-domain method such as the fast deconvolution method [7], which has been shown to be very useful and easy to use in several practical cases, can suffer from a circular convolution effect when the inverse filters are not long enough compared to the duration of the acoustic path response. In an adaptive implementation method, the crosstalk cancellation filter is calculated adaptively with the feedback signals received by miniature microphones placed in human ears [9]. Several adaptive crosstalk cancellation methods typically employ some variation of LMS or RLS algorithms [10–13]. The LMS algorithm, which is known for its simplicity and robustness, has been used widely, but its convergence speed is slow. The RLS algorithm may accelerate the convergence, but the large computation load is a side effect. Although many algorithms have been proposed, the adaptive implementation method remains academic research rather than a real solution. The reason is that people who do not want to use headphones would probably not like to use a pair of microphones in the ears to optimize loudspeaker reproduction either.

One key limitation of a crosstalk cancellation system arises from the fact that any listener movement which exceeds 75–100 mm may completely destroy the desired spatial effect [14, 15]. This problem can be resolved by tracking the listener's head in 3D space. The head position is captured by a magnetic or camera-based tracker, then the HRTF filters and the crosstalk canceller based on the location of the listener are updated in real time [16]. Although head-tracking systems can be employed, measures should still be taken to increase the robustness of the crosstalk cancellation system. It has been shown that the robust solution to this virtual sound system could be obtained by placing the loudspeakers in an appropriate way to ensure that the acoustic transmission path or transfer function matrix is well conditioned [17–19]. Robust crosstalk cancellation methods with multiple loudspeakers have been proposed [8, 20, 21]. Another approach adds robustness of a crosstalk canceller by exploring the statistical knowledge of acoustic transfer functions [22].

This paper focuses on the crosstalk cancellation problem for a stereo loudspeaker system. Least-squares methods are popular in designing a crosstalk cancellation system; however, the required large computation is always a challenge. To reduce the computational cost, this paper proposes a novel crosstalk cancellation system based on common-acoustical pole/zero (CAPZ) models, which outperforms conventional all-zero or pole/zero models in computational efficiency [23, 24]. The acoustic paths from loudspeakers to ears are approximated with CAPZ models, then the crosstalk cancellation filters are designed based on the CAPZ transfer functions. Compared with conventional least-squares methods, the proposed method can reduce the computation cost greatly. The paper is organized as follows. Conventional crosstalk cancellation methods are introduced in Section 2. Then the proposed crosstalk cancellation method based on the CAPZ model is described in detail in Section 3. The performance of the proposed method is evaluated in Section 4. Finally, conclusions are drawn in Section 5.

## 2. Conventional Crosstalk Canceller

where is the identity matrix. The delay term is necessary to guarantee that is physical realizable (causal). However, a perfect reproduction is impossible because is generally nonminimum-phase, in which case a least-squares algorithm is employed to approximate the optimal inverse filter . The time-domain least-squares algorithm is given below.

is a vector of length whose th component equals 1, and is a vector of length containing only zeros.

where is a regularization parameter to increase the robustness of the inversion [25].

The acoustic path matrix is dependent on the head position. When the head moves, it is required to update and calculate in real time. The computation load becomes heavy when the size of is large.

In [26], a single-filter structure for a stereo loudspeaker system is proposed to calculate the inverse of , which needs less computation. It is given as follows.

is a convolution matrix of size by cascading of the vector ; .

The off-diagonal items of (21) are always zeros regardless the value of . This implies that the crosstalk is almost fully suppressed. However, due to the filtering effect by the diagonal items in (21), distortion will be introduced when reproducing the target signals. This is the inherent disadvantage of the single-filter structure method.

## 3. Crosstalk Cancellation System Based on CAPZ Models

The acoustic transfer function is usually an all-zero model, whose coefficients are its impulse response. However, when the duration of the impulse response is long, it requires a large number of parameters to represent the transfer function [27]. This results in large computation in binaural synthesis and crosstalk cancellation. Pole/zero models may decrease the computational load, but their poles and zeros both change when the acoustic transfer function varies, leading to inconvenience for acoustic path inversion. To reduce the computational cost, this paper attempts to approximate the acoustic transfer function with common-acoustical pole/zero (CAPZ) models, then design a crosstalk cancellation system based on it.

### 3.1. CAPZ Modeling of Acoustic Transfer Functions

Haneda proposed the concept of common-acoustical pole/zero (CAPZ) models, and modeled room transfer functions and head-related transfer functions with good results [23, 24]. He believed that an HRTF contains a resonance system of ear canal whose resonance frequencies and factors are independent of source directions. Based on this, the HRTF can be efficiently modeled by using poles that are independent of source directions, with zeros that are dependent on source directions. The poles represent the resonance frequencies and factors. The model is called common-acoustical pole/zero model. CAPZ models share one set of poles and process their own zeros individually. This obviously reduces the amount of parameters with respect to conventional pole/zero models, and also cut down computation.

where and are the numbers of the poles and zeros, and are the pole and zero coefficient vectors, respectively. The CAPZ parameters may be estimated with a least-squares method [23, 24] or a state-space method [28]. The least-squares method is simply given below.

where is the length of and is the impulse response of .

It is useful to specify the selection of the number of poles and zeros, and . The more poles and zeros used, the better approximation result may be obtained. On the other hand, more parameters require higher computation. Thus a trade-off should be considered. Generally, in the least-squares method, the number of parameters can be determined empirically [24]; or in the state-space method, it is determined based on the singular-value decomposition result [28].

### 3.2. Crosstalk Cancellation Based on the CAPZ Model

where , , , and are the transmission delays from the loudspeakers to the ears.

is a vector of length whose th component equas 1.

### 3.3. Computational Complexity Analysis

#### 3.3.1. Computational Complexity of Crosstalk Cancellation Filter Estimation

From Table 2, the computational complexity of the least-squares method is much higher than the other two methods (almost 8 times), while the computation of the single-filter structure method is a little higher than the proposed CAPZ method.

#### 3.3.2. Computational Complexity of Crosstalk Cancellation Filter Implementation

The least-squares method has the lowest computational complexity in crosstalk cancellation filter implementation, while the single-filter structure method has the highest one.

In summary, although the least-squares method has the lowest computational cost in filter implementation, its complexity in filter estimation is much higher than the other two. On the other hand, the CAPZ method has the lowest complexity in filter estimation, and ranks second in terms of the complexity of filter implementation. In a global view of both measures, the CAPZ method is the most effective among the three ones. Later, the performance comparison of the three methods will be carried out in Section 4.3 under the same assumption with .

## 4. Performance Evaluation

The acoustic transfer function can be estimated based on the positions of loudspeakers and ears. Head-related transfer functions (HRTF) provide a measure of the transfer path of a sound from some point in space to the ear canal. This paper assumes that the acoustic transfer function can be represented by HRTF in anechoic conditions. The HRTFs used in our experiments are from the extensive set of HRTFs measured at the CIPIC Interface Laboratory, University of California [29]. The database is composed of HRTFs for 45 subjects, and each subject contains 1250 HRTFs measured at 25 different azimuths and 50 different elevations. The HRTF is 200 taps long with a sampling rate of 44.1 kHz. In the experiment, the HRTFs are modeled as CAPZ models first, then the performance of the proposed crosstalk cancellation method is evaluated in two cases for loudspeakers placement: symmetric and asymmetric cases.

### 4.1. Experiments on CAPZ Modeling

### 4.2. Performance Metrics

and the average signal-to-crosstalk ratio is given by .

and the average signal-to-distortion ratio is .

According to the definitions above, the signal-to-crosstalk ratio measures the crosstalk suppression performance, and signal-to-distortion ratio measures the signal reproduction performance.

### 4.3. Performance Evaluation in Symmetric Cases

Filter length | LS | SF | CAPZ |
---|---|---|---|

50 | 50 | 100 | 100 |

100 | 100 | 150 | 150 |

150 | 100 | 150 | 150 |

200 | 150 | 200 | 200 |

250 | 150 | 200 | 200 |

300 | 200 | 250 | 250 |

350 | 200 | 250 | 250 |

400 | 250 | 300 | 300 |

From Figures 3–6, similar variation trends of the signal-to-distortion ratio (SDR) and signal-to-crosstalk ratio (SCR) may be observed for both noisy and noise-free cases. For all the three methods, the SDR performance increases with the inverse filter length , and the increase is small for . The slow variation of SDR for large may be related to the least-squares matrix inversion process. When increases, the size of the matrices , and increases, the matrix inversion becomes difficult and more errors will be introduced. The error may cancel part of the benefit brought by a longer inverse filter. Thus the SDR increases slowly for large inverse filter length. With regard to the SCR performance, the least-squares method yields increasing SCR with the increasing inverse filter length, while the single-filter structure method and the CAPZ method yield almost constant SCR with the increasing inverse filter length. Since the off-diagonal items of (21) are always zeros regardless of the value of , the SCR of the single-filter structure method is little affected by the inverse filter length. Likewise, the CAPZ method shows similar trend as the single-filter structure method does. In Figure 6, a slow decrease is also noticed for the curves of the CAPZ method and the single-filter structure method, which may be caused by the noise added to the acoustic transfer functions.

Mean crosstalk cancellation performance in the symmetric case for the three methods when the inverse filter length equals 150.

Method | SDR(dB) | SCR(dB) | Crosstalk cancellation filter length |
---|---|---|---|

Least-squares | 11.2 | 15.6 | 150 |

Single-filter structure | 7.1 | 26.8 | 349 |

CAPZ | 8.6 | 17.6 | 233 |

### 4.4. Performance Evaluation in Asymmetric Cases

Crosstalk cancellation performance in the asymmetric case for the three methods when the inverse filter length equals 150.

Method | SDR(dB) | SCR(dB) |
---|---|---|

Least-squares | 14.7 | 18.9 |

Single-filter structure | 10.2 | 27.7 |

CAPZ | 12.0 | 19.1 |

## 5. Conclusion

This paper investigates crosstalk cancellation for authentic binaural reproduction of stereo sounds over two loudspeakers. Since the crosstalk cancellation filter has to be updated according to the head position in real time, the computational efficiency of the crosstalk cancellation algorithm is crucial for practical applications. To reduce the computational cost, this paper presents a novel crosstalk cancellation system based on common-acoustical pole/zero (CAPZ) models. The acoustic transfer paths from loudspeakers to ears are approximated with CAPZ models, then the crosstalk cancellation filter is designed based on the CAPZ model. Since the CAPZ model has advantages in storage and computation, the proposed method is more efficient than conventional ones. Simulation results demonstrate that the proposed method can reduce the computational complexity greatly with comparable crosstalk cancellation performance with respect to conventional methods.

The experiment in this paper is conducted in anechoic conditions. However, with promising results in anechoic environments, the proposed method can be extended to realistic situations. For example, in reverberation conditions, the acoustic transfer functions may also be approximated by the CAPZ model, and then crosstalk cancellation may be conducted in a similar way. However, due to large computational complexity and time-varying environments, this situation has not been specially addressed. Our further research will focus on this practical problem.

## Declarations

### Acknowledgments

This work is supported by the National Natural Science Foundation of China (60772161, 60372082) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (200801410015). This work is also supported by NRC-MOE Research and Postdoctoral Fellowship Program from Ministry of Education of China and National Research Council of Canada.The authors gratefully acknowledge stimulating discussions with Dr. Heping Ding and Dr. Michael R. Stinson from Institute for Microstructural Sciences, National Research Council Canada.

## Authors’ Affiliations

## References

- Begault DR:
*3D Sound for Virtual Reality and Multimedia*. 1st edition. Academic Press, London, UK; 1994.Google Scholar - Bronkhorst AW: Localization of real and virtual sound sources.
*Journal of the Acoustical Society of America*1995, 98(5):2542-2553. 10.1121/1.413219View ArticleGoogle Scholar - Gardner WG, Martin KD: HRTF measurements of a KEMAR.
*Journal of the Acoustical Society of America*1995, 97(6):3907-3908. 10.1121/1.412407View ArticleGoogle Scholar - Otani M, Ise S: Fast calculation system specialized for head-related transfer function based on boundary element method.
*Journal of the Acoustical Society of America*2006, 119(5):2589-2598. 10.1121/1.2191608View ArticleGoogle Scholar - Atal BS, Schroeder MR: Apparent sound source translator. US Patent no. 3,236,949, 1966Google Scholar
- Bauer BB: Stereophonic earphones and binaural loudspeakers.
*Journal of the AudioEngineering Society*1961, 9(2):148-151.Google Scholar - Kirkeby O, Nelson PA, Hamada H, Orduna-Bustamante F: Fast deconvolution of multichannel systems using regularization.
*IEEE Transactions on Speech and Audio Processing*1998, 6(2):189-194. 10.1109/89.661479View ArticleGoogle Scholar - Huang Y, Benesty J, Chen J: On crosstalk cancellation and equalization with multiple loudspeakers for 3-D sound reproduction.
*IEEE Signal Processing Letters*2007, 14(10):649-652.View ArticleGoogle Scholar - Garas J:
*Adaptive 3D Sound Systems*. Kluwer Academic Publishers, Norwell, Mass, USA; 2000.View ArticleGoogle Scholar - Mouchtaris A, Reveliotis P, Kyriakakis C: Inverse filter design for immersive audio rendering over loudspeakers.
*IEEE Transactions on Multimedia*2000, 2(2):77-87. 10.1109/6046.845012View ArticleGoogle Scholar - Nelson PA, Hamada H, Elliott SJ: Adaptive inverse filters for stereophonic sound reproduction.
*IEEE Transactions on Signal Processing*1992, 40(7):1621-1632. 10.1109/78.143434View ArticleMATHGoogle Scholar - Gonzalez A, Lopez JJ: Time domain recursive deconvolution in sound reproduction.
*Proceedings of IEEE Interntional Conference on Acoustics, Speech, and Signal Processing, June 2000*833-836.Google Scholar - Kuo SM, Canfield GH: Dual-channel audio equalization and cross-talk cancellation for 3-D sound reproduction.
*IEEE Transactions on Consumer Electronics*1997, 43(4):1189-1196. 10.1109/30.642386View ArticleGoogle Scholar - Kyriakakis C: Fundamental and Technological Limitations of Immersive Audio Systems.
*Proceedings of the IEEE*1998, 86(5):941-951. 10.1109/5.664281View ArticleGoogle Scholar - Bai MR, Lee C-C: Objective and subjective analysis of effects of listening angle on crosstalk cancellation in spatial sound reproduction.
*Journal of the Acoustical Society of America*2006, 120(4):1976-1989. 10.1121/1.2257986View ArticleGoogle Scholar - Lentz T: Dynamic crosstalk cancellation for binaural synthesis in virtual reality environments.
*Journal of the Audio Engineering Society*2006, 54(4):283-294.Google Scholar - Ward DB, Elko GW: Effect of loudspeaker position on the robustness of acoustic crosstalk cancellation.
*IEEE Signal Processing Letters*1999, 6(5):106-108. 10.1109/97.755428View ArticleGoogle Scholar - Takeuchi T, Nelson PA: Optimal source distribution for binaural synthesis over loudspeakers.
*Journal of the Acoustical Society of America*2002, 112(6):2786-2797. 10.1121/1.1513363View ArticleGoogle Scholar - Bai MR, Tung C-W, Lee C-C: Optimal design of loudspeaker arrays for robust cross-talk cancellation using the Taguchi method and the genetic algorithm.
*Journal of the Acoustical Society of America*2005, 117(5):2802-2813. 10.1121/1.1880852View ArticleGoogle Scholar - Yang J, Gan W-S, Tan S-E: Improved sound separation using three loudspeakers.
*Acoustic Research Letters Online*2003, 4: 47-52. 10.1121/1.1566419View ArticleGoogle Scholar - Kim Y, Deille O, Nelson PA: Crosstalk cancellation in virtual acoustic imaging systems for multiple listeners.
*Journal of Sound and Vibration*2006, 297(1-2):251-266. 10.1016/j.jsv.2006.03.042View ArticleGoogle Scholar - Kallinger M, Mertins A: A spatially robust least squares crosstalk canceller.
*Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '07), April 2007*177-180.Google Scholar - Haneda Y, Makino S, Kaneda Y: Common acoustical pole and zero modeling of room transfer functions.
*IEEE Transactions on Speech and Audio Processing*1994, 2(2):320-328. 10.1109/89.279281View ArticleGoogle Scholar - Haneda Y, Makino S, Kaneda Y, Kitawaki N: Common-acoustical-pole and zero modeling of head-related transfer functions.
*IEEE Transactions on Speech and Audio Processing*1999, 7(2):188-195. 10.1109/89.748123View ArticleGoogle Scholar - Golub GH, Van Loan CF:
*Matrix Computations*. 3rd edition. Johns Hopkins University Press, Baltimore, Md, USA; 1996.MATHGoogle Scholar - Kim S-M, Wang S: A Wiener filter approach to the binaural reproduction of stereo sound.
*Journal of the Acoustical Society of America*2003, 114(6):3179-3188. 10.1121/1.1624070View ArticleGoogle Scholar - Wang L, Yin F, Chen Z: HRTF compression via principal components analysis and vector quantization.
*IEICE Electronics Express*2008, 5(9):321-325. 10.1587/elex.5.321View ArticleGoogle Scholar - Grantham DW, Willhite JA, Frampton KD, Ashmead DH: Reduced order modeling of head related impulse responses for virtual acoustic displays.
*Journal of the Acoustical Society of America*2005, 117(5):3116-3125. 10.1121/1.1882944View ArticleGoogle Scholar - Algazi VR, Duda RO, Thompson DM, Avendano C: The CIPIC HRTF database.
*Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, October 2001*99-102.Google Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.