Skip to main content

2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure

Abstract

A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.

References

  1. 1.

    Crochiere RE, Webber SA, Flanagan JL: Digital coding of speech in subbands. Bell System Technical Journal 1976, 55(8):1069–1085.

    Article  Google Scholar 

  2. 2.

    Vetterli M: Multidimensional subband coding: some theory and algorithms. Signal Processing 1984, 6(2):97–112. 10.1016/0165-1684(84)90012-4

    MathSciNet  Article  Google Scholar 

  3. 3.

    Woods JW, O'neil SD: Subband coding of images. IEEE Transactions on Acoustics, Speech, and Signal Processing 1986, 34(5):1278–1288. 10.1109/TASSP.1986.1164962

    Article  Google Scholar 

  4. 4.

    Smith MJT, Eddins SL: Analysis/synthesis techniques for subband image coding. IEEE Transactions on Acoustics, Speech, and Signal Processing 1990, 38(8):1446–1456. 10.1109/29.57579

    Article  Google Scholar 

  5. 5.

    Daubechies I: Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics 1988, 41: 909–996. 10.1002/cpa.3160410705

    MathSciNet  Article  Google Scholar 

  6. 6.

    Mallat SG: Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989, 37(12):2091–2110. 10.1109/29.45554

    Article  Google Scholar 

  7. 7.

    Galand CR, Nussbaumer HJ: New quadrature mirror filter structures. IEEE Transactions on Acoustics, Speech, and Signal Processing 1984, 32(3):522–531. 10.1109/TASSP.1984.1164356

    Article  Google Scholar 

  8. 8.

    Jain VK, Crochiere RE: Quadrature mirror filter design in the time domain. IEEE Transactions on Acoustics, Speech, and Signal Processing 1984, 32(2):353–361. 10.1109/TASSP.1984.1164329

    Article  Google Scholar 

  9. 9.

    Smith MJT, Barnwell TP: Exact reconstruction techniques for tree-structured subband coders. IEEE Transactions on Acoustics, Speech, and Signal Processing 1986, 34(3):434–441. 10.1109/TASSP.1986.1164832

    Article  Google Scholar 

  10. 10.

    Vaidyanathan PP:Quadrature Mirror Filter banks,-Band extensions, and PR techniques. IEEE Acoustics, Speech, and Signal Processing Magazine 1987, 4(3):4–20.

    Google Scholar 

  11. 11.

    Vaidyanathan PP:Theory and design of M-channel maximally decimated quadrature mirror filters with arbitraryM, having the perfect reconstruction property. IEEE Transactions on Acoustics, Speech, and Signal Processing 1987, 35(4):476–492. 10.1109/TASSP.1987.1165155

    Article  Google Scholar 

  12. 12.

    Vetterli M, Le Gall DJ: Perfect reconstruction FIR filter banks: some properties and factorizations. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989, 37(7):1057–1071. 10.1109/29.32283

    Article  Google Scholar 

  13. 13.

    Nguyen TQ, Vaidyanathan PP: Two-channel perfect reconstruction FIR QMF structures which yield linear phase analysis and synthesis filters. IEEE Transactions on Acoustics, Speech, and Signal Processing 1990, 38(3):433–446. 10.1109/29.106862

    Article  Google Scholar 

  14. 14.

    Vaidyanathan PP, Hoang PQ: Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks. IEEE Transactions on Acoustics, Speech, and Signal Processing 1988, 36(1):81–94. 10.1109/29.1491

    Article  Google Scholar 

  15. 15.

    Akansu AN, Haddad RA: Multiresolution Signal Decomposition: Transforms, Subbands and Wavelets. Academic Press, San Diego, Calif, USA; 1992.

    Google Scholar 

  16. 16.

    Tay DBH, Kingsbury NG: Flexible design of multidimensional perfect reconstruction FIR 2-band filters using transformations of variables. IEEE Transactions on Image Processing 1993, 2(4):466–480. 10.1109/83.242356

    Article  Google Scholar 

  17. 17.

    Simoncelli EP, Adelson EH: Non-separable extensions of quadrature mirror filters to multiple dimensions. Proceedings of the IEEE 1990, 78(4):652–664. Special issue on multi-dimensional signal processing 10.1109/5.54805

    Article  Google Scholar 

  18. 18.

    Bamberger RH, Smith MJT: A filter bank for the directional decomposition of images: theory and design. IEEE Transactions on Signal Processing 1992, 40(4):882–893. 10.1109/78.127960

    Article  Google Scholar 

  19. 19.

    Ansari R, Lau CL: Two dimensional IIR filters for exact reconstruction in tree-structured sub-band decomposition. Electronics Letters 1987, 23(12):633–634. 10.1049/el:19870453

    Article  Google Scholar 

  20. 20.

    Ansari R: Efficient IIR and FIR fan filters. IEEE Transactions on Circuits and Systems 1987, 34(8):941–945. 10.1109/TCS.1987.1086224

    Article  Google Scholar 

  21. 21.

    Chen T, Vaidyanathan PP: Multidimensional multirate filters derived from one dimensional filters. Electronics Letters 1991, 27(3):225–228. 10.1049/el:19910146

    Article  Google Scholar 

  22. 22.

    Chen T, Vaidyanathan PP: Multidimensional multirate filters and filter banks derived from one-dimensional filters. IEEE Transactions on Signal Processing 1993, 41(5):1749–1765. 10.1109/78.215297

    Article  Google Scholar 

  23. 23.

    Viscito E, Allebach JP: Design of perfect reconstruction multi-dimensional filter banks using cascaded Smith form matrices. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '88), June 1988, Espoo, Finland 1: 831–834.

    Google Scholar 

  24. 24.

    Viscito E, Allebach JP: The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices. IEEE Transactions on Circuits and Systems 1991, 38(1):29–41. 10.1109/31.101301

    Article  Google Scholar 

  25. 25.

    Basu S, Chiang CH: A complete parametrization of 2D nonseparable orthogonal wavelets. Proceedings of IEEE International Symposium on Time-Frequency and Time-Scale Analysis, October 1992, Victoria, BC, Canada 55–58.

    Google Scholar 

  26. 26.

    Kovacevic J, Vetterli M:Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for. IEEE Transactions on Information Theory 1992, 38(2):533–555. Special issue on wavelet transform and multiresolution signal analysis 10.1109/18.119722

    MathSciNet  Article  Google Scholar 

  27. 27.

    Kovaceciv J, Vetterli M: Perfect reconstruction filter banks with rational sampling factors. IEEE Transactions on Signal Processing 1993, 41(6):2047–2066. 10.1109/78.218135

    Article  Google Scholar 

  28. 28.

    Venkataraman S, Levy BC: Nonseparable orthogonal linear phase perfect reconstruction filter banks and their application to image compression. Proceedings of the International Conference on Image Processing (ICIP '94), November 1994, Austin, Tex, USA 334–338.

    Google Scholar 

  29. 29.

    Gao XQ, Nguyen TQ, Strang G: Theory and lattice structures of complex paraunitary filterbanks with filters of (Hermitian)-symmetry/antisymmetry properties. IEEE Transactions on Signal Processing 2001, 49(5):1028–1043. 10.1109/78.917806

    MathSciNet  Article  Google Scholar 

  30. 30.

    Chan SC: Two-dimensional nonseparable modulated filter banks. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '94), April 1994, Adelaide, Australia 141–144.

    Google Scholar 

  31. 31.

    Kovacevic J, Vetterli M: Nonseparable two- and three-dimensional wavelets. IEEE Transactions on Signal Processing 1995, 43(5):1269–1273. 10.1109/78.382414

    Article  Google Scholar 

  32. 32.

    Tran TD, Nguyen TQ:On-Channel linear phase FIR Filter banks and application in image compression. IEEE Transactions on Signal Processing 1997, 45(9):2175–2187. 10.1109/78.622942

    Article  Google Scholar 

  33. 33.

    Huang J, Gu G: A direct approach to the design of QMF banks via frequency domain optimization. IEEE Transactions on Signal Processing 1998, 46(8):2131–2146. 10.1109/78.705424

    MathSciNet  Article  Google Scholar 

  34. 34.

    Evangelista G, Cavaliere S: Frequency warped filter banks and wavelet transform: a discrete-time approach via laguerre expansions. IEEE Transactions on Signal Processing 1998, 46(10):2638–2650. 10.1109/78.720367

    Article  Google Scholar 

  35. 35.

    Goh CK, Lim YC: An efficient algorithm to design weighted minimax perfect reconstruction quadrature mirror filter banks. IEEE Transactions on Signal Processing 1999, 47(12):3303–3314. 10.1109/78.806074

    Article  Google Scholar 

  36. 36.

    Labeau F, Vandendorpe L, Macq B: Structures, factorizations and design criteria for oversampled paraunitary filterbanks yielding linear-phase filters. IEEE Transactions on Signal Processing 2000, 48(11):3062–3071. 10.1109/78.875464

    Article  Google Scholar 

  37. 37.

    Tran TD, Ikehara M, Nguyen TQ: Linear phase paraunitary filter bank with filters of different lengths and its application in image compression. IEEE Transactions on Signal Processing 1999, 47(10):2730–2744. 10.1109/78.790655

    Article  Google Scholar 

  38. 38.

    Gao X, Nguyen Q, Strang G:On factorization of-channel paraunitary filterbanks. IEEE Transactions on Signal Processing 2001, 49(5):1433–1446.

    MathSciNet  Article  Google Scholar 

  39. 39.

    Oraintara S, Tran TD, Heller PN, Nguyen TQ:Lattice structure for regular paraunitary linear-phase filterbanks and-band orthogonal symmetric wavelets. IEEE Transactions on Signal Processing 2001, 49(11):2659–2672. 10.1109/78.960413

    MathSciNet  Article  Google Scholar 

  40. 40.

    Parker SR, Kayran AH: Lattice parameter autoregressive modelling of 2-D fields-Part I: the quarter plane case. IEEE Transactions on Acoustics, Speech, and Signal Processing 1984, 32(4):872–885. 10.1109/TASSP.1984.1164412

    Article  Google Scholar 

  41. 41.

    Lev-Ari H, Parker SR: Stable and efficient 2-D lattice filters. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '86), April 1986, Tokyo, Japan 695–698.

    Google Scholar 

  42. 42.

    Sezen S: Application of 2-D lattice filter structures to the subband decomposition problem, M.S. thesis. Boğaziçi University, Istanbul, Turkey; 1998.

    Google Scholar 

  43. 43.

    Ertuzun A, Kayran AH, Panayirci E: Stable quarter-plane 2-D lattice filters. Electronic Letters 1990, 26(12):806–807. 10.1049/el:19900526

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Sezen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sezen, S., Ertüzün, A. 2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure. EURASIP J. Adv. Signal Process. 2006, 042672 (2006). https://doi.org/10.1155/ASP/2006/42672

Download citation

Keywords

  • Computer Simulation
  • Lattice Stage
  • Quantum Information
  • Lattice Structure
  • Filter Bank