Skip to main content

Fast Registration of Remotely Sensed Images for Earthquake Damage Estimation


Analysis of the multispectral remotely sensed images of the areas destroyed by an earthquake is proved to be a helpful tool for destruction assessments. The performance of such methods is highly dependant on the preprocess that registers the two shots before and after an event. In this paper, we propose a new fast and reliable change detection method for remotely sensed images and analyze its performance. The experimental results show the efficiency of the proposed algorithm.


  1. 1.

    Wiemker R, Speck A, Kulbach D, Spitzer H, Bienlein J: Unsupervised robust change detection on multispectral imagery using spectral and spatial features. Proceedings of the 3rd International Airborne Remote Sensing Conference and Exhibition, July 1997, Copenhagen, Denmark 1: 640–647.

    Google Scholar 

  2. 2.

    Fischer CS, Levien LM: Monitoring California's hardwood rangelands using remotely sensed data. Proceedings of the 5th Symposium on Oak Woodlands, October 2001, San Diego, Calif, USA

    Google Scholar 

  3. 3.

    Bergen KM, Brown DG, Rutherford JR, Gustafson EJ: Development of a method for remote sensing of land-cover change 1980–2000 in the USFS North Central Region using heterogeneous USGS LUDA and NOAA AVHRR 1 km data. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS '02), June 2002, Toronto, Ontario, Canada 2: 1210–1212.

    Article  Google Scholar 

  4. 4.

    Matsuoka M, Yamazaki F: Application of the damage detection method using SAR intensity images to recent earthquakes. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS '02), June 2002, Toronto, Ontario, Canada 4: 2042–2044.

    Article  Google Scholar 

  5. 5.

    Andre G, Chiroiu L, Mering C, Chopin F: Building destruction and damage assessment after earthquake using high resolution optical sensors. The case of the Gujarat earthquake of January 26, 2001. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS '03), July 2003, Toulouse, France 4: 2398–2400.

    Google Scholar 

  6. 6.

    Nakamura M, Sakamoto M, Kakumoto S, Kosugi Y: Stabilizing the accuracy of change detection from geographic images by multi-leveled exploration and selective smoothing. Proceedings of the Global Conference and Exhibition on Geospatial Technology, Tools and Solutions (GIS '03), March 2003, Vancouver, BC, Canada

    Google Scholar 

  7. 7.

    Brown LG: A survey of image registration techniques. ACM Computing Surveys 1992, 24(4):325–376. 10.1145/146370.146374

    Article  Google Scholar 

  8. 8.

    Townshend JRG, Justice CO, Gurney C, McManus J: The impact of misregistration on change detection. IEEE Transactions on Geoscience and Remote Sensing 1992, 30(5):1054–1060. 10.1109/36.175340

    Article  Google Scholar 

  9. 9.

    Zitova B, Flusser J: Image registration methods: a survey. Image and Vision Computing 2003, 21(11):977–1000. 10.1016/S0262-8856(03)00137-9

    Article  Google Scholar 

  10. 10.

    Robinson D, Milanfar P: Fundamental performance limits in image registration. Proceedings of IEEE International Conference on Image Processing (ICIP '03), September 2003, Barcelona, Spain 3: 323–326.

    Google Scholar 

  11. 11.

    Li H, Manjunath BS, Mitra SK: A contour-based approach to multisensor image registration. IEEE Transactions on Image Processing 1995, 4(3):320–334. 10.1109/83.366480

    Article  Google Scholar 

  12. 12.

    Xia M, Liu B: Image registration by "Super-curves". IEEE Transactions on Image Processing 2004, 13(5):720–732. 10.1109/TIP.2003.822611

    MathSciNet  Article  Google Scholar 

  13. 13.

    Helm M: Towards automatic rectification of satellite images using feature based matching. Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS '91), June 1991, Espoo, Finland 4: 2439–2442.

    Google Scholar 

  14. 14.

    Goshtasby A, Stockman GC: Point pattern matching using convex hull edges. IEEE Transactions on Systems, Man and Cybernetics 1985, 15(5):631–637.

    Article  Google Scholar 

  15. 15.

    Hsieh YC, McKeown DM, Perlant FP: Performance evaluation of scene registration and stereo matching for cartographic feature extraction. IEEE Transactions on Pattern Analysis and Machine Intelligence 1992, 14(2):214–238. 10.1109/34.121790

    Article  Google Scholar 

  16. 16.

    Roux M: Automatic registration of SPOT images and digitized maps. Proceedings of IEEE International Conference on Image Processing (ICIP '96), September 1996, Lausanne, Switzerland 2: 625–628.

    Article  Google Scholar 

  17. 17.

    Li SZ, Kittler J, Petrou M: Matching and recognition of road networks from aerial images. Proceedings of the 2nd European Conference on Computer Vision (ECCV '92), May 1992, Santa Margherita Ligure, Italy 857–861.

    Google Scholar 

  18. 18.

    Sester M, Hild H, Fritsch D: Definition of ground-control features for image registration using GIS-data. Proceedings of the Symposium on Object Recognition and Scene Classification from Multispectral and Multisensor Pixels CD-ROM, 1998, Columbus, Ohio, USA 32/3: 537–543.

  19. 19.

    Maître H, Wu Y: Improving dynamic programming to solve image registration. Pattern Recognition 1987, 20(4):443–462. 10.1016/0031-3203(87)90071-9

    Article  Google Scholar 

  20. 20.

    Neemuchwala H, Hero A, Carson P: Image registration using alpha-entropy measures and entropic graphs. European Journal on Signal Processing 2004. Special issue on content-based visual information retrieval,

    Google Scholar 

  21. 21.

    Chatterjee C, Roychowdhury VP: Algorithms for coplanar camera calibration. Machine Vision and Applications 2000, 12(2):84–97. 10.1007/s001380050127

    Article  Google Scholar 

  22. 22.

    Abdel-Aziz Y, Karara H: Direct linear transformation from comparator coordinates into object space coordinates in close range photogrammetry. Proceedings of the ASP/UI Symposium on Close-Range Photogrammetry, January 1971, Urbana, Ill, USA 1–18.

    Google Scholar 

  23. 23.

    Abadpour A, Kasaei S: Fast registration of remotely sensed images. Proceedings of the 10th Annual Computer Society of Iran Computer Conference (CSICC '05), February 2005, Tehran, Iran 61–67.

    Google Scholar 

  24. 24.

    Amiri SM, Kasaei S: An ultra fast method to approximate affine transform using control points. submitted to IEEE Signal Processing Letters

  25. 25.

    Swain MJ, Ballard DH: Color indexing. International Journal of Computer Vision 1991, 7(1):11–32. 10.1007/BF00130487

    Article  Google Scholar 

  26. 26.

    Lee HY, Lee HK, Ha YH: Spatial color descriptor for image retrieval and video segmentation. IEEE Transactions on Multimedia 2003, 5(3):358–367. 10.1109/TMM.2003.814792

    MathSciNet  Article  Google Scholar 

  27. 27.

    Androutsos D, Plataniotis K, Venetanopulos A: Efficient indexing and retrieval of color image data using a vector-based approach, Ph.D. dissertation. University of Toronto, Toronto, Ontario, Canda; 1999.

    Google Scholar 

  28. 28.

    Shin MC, Chang KI, Tsap LV: Does colorspace transformation make any difference on skin detection? Proceedings of the 6th IEEE Workshop on Applications of Computer Vision (WACV '02), December 2002, Orlando, Fla, USA 275–279.

    Google Scholar 

  29. 29.

    Abadpour A, Kasaei S: A new parametric linear adaptive color space and its PCA-based implementation. Proceedings of the 9th Annual Computer Society of Iran Computer Conference (CSICC '04), February 2004, Tehran, Iran 2: 125–132.

    Google Scholar 

  30. 30.

    Abadpour A, Kasaei S: Performance analysis of three homogeneity criteria for color image processing. Proceedings of IPM Workshop on Computer Vision, April 2004, Tehran, Iran

    Google Scholar 

  31. 31.

    Du Y, Chang C-I, Thouin PD: Unsupervised approach to color video thresholding. Optical Engineering 2004, 43(2):282–289. 10.1117/1.1637364

    Article  Google Scholar 

  32. 32.

    Patras I, Hendriks EA, Lagendijk RL: Semi-automatic object-based video segmentation with labeling of color segments. Signal Processing: Image Communication 2003, 18(1):51–65. 10.1016/S0923-5965(02)00092-9

    Google Scholar 

  33. 33.

    Abadpour A, Kasaei S: A new FPCA-based fast segmentation method for color images. Proceedings of the 4th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT '04), December 2004, Rome, Italy 72–75.

    Google Scholar 

  34. 34.

    Nikolaev DP, Nikolayev PP: Linear color segmentation and its implementation. Computer Vision and Image Understanding 2004, 94(1–3):115–139.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Arash Abadpour.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abadpour, A., Kasaei, S. & Amiri, S.M. Fast Registration of Remotely Sensed Images for Earthquake Damage Estimation. EURASIP J. Adv. Signal Process. 2006, 076462 (2006).

Download citation


  • Information Technology
  • Detection Method
  • Quantum Information
  • Change Detection
  • Helpful Tool