Skip to main content

Shape-from-Shading for Oblique Lighting with Accuracy Enhancement by Light Direction Optimization

Abstract

We present a shape-from-shading approach for oblique lighting with accuracy enhancement by light direction optimization. Based on an application of the Jacobi iterative method to the consistency between the reflectance map and image, four surface normal approximations are introduced and the resulting four iterative relations are combined as constraints to get an iterative relation. The matrix that converts the shading information to the depth is modified so as to be uniform over the whole image region, making the iteration stable and, as a result, the resulting shape more accurate. Then, to enhance the accuracy, the light direction is optimized for slant angle using two criteria based on the initial boundary value and the rank of the converting matrix. The method is examined using synthetic and real images to show that it is superior to the current state-of-the-art methods and that it is effective for oblique light direction whose slant angle ranges from 55 to 75 degrees.

References

  1. 1.

    Horn BKP: Obtaining shape from shading information. In The Psychology of Computer Vision. Edited by: Winston PH. McGraw-Hill, New York, NY, USA; 1975:115–155.

    Google Scholar 

  2. 2.

    Zheng Q, Chellappa R: Estimation of illuminant direction, albedo, and shape from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence 1991, 13(7):680–702. 10.1109/34.85658

    Article  Google Scholar 

  3. 3.

    Worthington PL, Hancock ER: New constraints on data-closeness and needle map consistency for shape-from-shading. IEEE Transactions on Pattern Analysis and Machine Intelligence 1999, 21(12):1250–1267. 10.1109/34.817406

    Article  Google Scholar 

  4. 4.

    Tsai P-S, Shah M: Shape from shading using linear approximation. Image and Vision Computing 1994, 12(8):487–498. 10.1016/0262-8856(94)90002-7

    Article  Google Scholar 

  5. 5.

    Bichsel M, Pentland A: A simple algorithm for shape from shading. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR '92), June 1992, Champaign, Ill, USA 459–465.

    Google Scholar 

  6. 6.

    Kimmel R, Bruckstein AM: Tracking level sets by level sets: a method for solving the shape from shading problem. Computer Vision and Image Understanding 1995, 62(1):47–58. 10.1006/cviu.1995.1040

    Article  Google Scholar 

  7. 7.

    Samaras D, Metaxas D: Incorporating illumination constraints in deformable models for shape from shading and light direction estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 2003, 25(2):247–264. 10.1109/TPAMI.2003.1177155

    Article  Google Scholar 

  8. 8.

    Kimmel R, Sethian JA: Optimal algorithm for shape from shading and path planning. Journal of Mathematical Imaging and Vision 2001, 14(3):237–244. 10.1023/A:1011234012449

    MathSciNet  Article  Google Scholar 

  9. 9.

    Tankus A, Sochen N, Yeshurun Y: Perspective shape-from-shading by fast marching. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), June-July 2004, Washington, DC, USA 1: I-43–I-49.

    Google Scholar 

  10. 10.

    Prados E, Faugeras O, Rouy E: Shape from shading and viscosity solutions. Proceedings of 7th European Conference on Computer Vision (ECCV '02), May 2002, Copenhagen, Denmark 2: 790–804.

    MATH  Google Scholar 

  11. 11.

    Durou J-D, Falcone M, Sagona A: A survey of numerical methods for shape from shading. Report of IRIT 2004-2-R 2004.

    Google Scholar 

  12. 12.

    Prados E, Faugeras O: Shape from shading: a well-posed problem? Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '2005), June 2005, San Diego, Calif, USA 2: 870–877.

    Article  Google Scholar 

  13. 13.

    Tu P, Mendonça PRS: Surface reconstruction via Helmholtz reciprocity with a single image pair. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '03), June 2003, Madison, Wis, USA 1: 541–547.

    Google Scholar 

  14. 14.

    Metaxas D, Terzopoulos D: Shape and nonrigid motion estimation through physics-based synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence 1993, 15(6):580–591. 10.1109/34.216727

    Article  Google Scholar 

  15. 15.

    Prados E, Camilli F, Faugeras O: A viscosity method for shape-from-shading without boundary data. INRIA Research Report 5296 2004.

    Google Scholar 

  16. 16.

    Kimmel R, Bruckstein AM: Global shape from shading. Computer Vision and Image Understanding 1995, 62(3):360–369. 10.1006/cviu.1995.1060

    Article  Google Scholar 

  17. 17.

    Zhang R, Tsai P-S, Cryer JE, Shah M: Shape from shading: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 1999, 21(8):690–706. 10.1109/34.784284

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Osamu Ikeda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ikeda, O. Shape-from-Shading for Oblique Lighting with Accuracy Enhancement by Light Direction Optimization. EURASIP J. Adv. Signal Process. 2006, 092456 (2006). https://doi.org/10.1155/ASP/2006/92456

Download citation

Keywords

  • Information Technology
  • Iterative Method
  • Quantum Information
  • Normal Approximation
  • Image Region