 Research
 Open Access
 Published:
Particle swarm optimization for pilot tones design in MIMOOFDM systems
EURASIP Journal on Advances in Signal Processing volume 2011, Article number: 10 (2011)
Abstract
Channel estimation is an essential task in MIMOOFDM systems for coherent demodulation and data detection. Also designing pilot tones that affect the channel estimation performance is an important issue for these systems. For this reason, in this article we propose particle swarm optimization (PSO) to optimize placement and power of the combtype pilot tones that are used for least square (LS) channel estimation in MIMOOFDM systems. To optimize the pilot tones, upper bound of MSE is used as the objective function of PSO. The effects of Doppler shifts on designing pilot tones are also investigated. According to the simulation results, PSO is an effective solution for designing pilot tones.
Introduction
Recently, to meet the demand on high data rate transmission in communication systems, orthogonal frequency division multiplexing (OFDM) is applied as a modulation scheme. OFDM is a multicarrier modulation technique that operates with specific orthogonality constraints between subcarriers. The orthogonality results a waveform which uses available bandwidth with a high bandwidth efficiency [1]. Also OFDM can be combined with multiple transmit and receive antennas known as multiinput multioutput (MIMO) architecture to improve system capacity and quality of service [2].
However, at the receiver MIMOOFDM systems require channel state information (CSI) for coherent demodulation and data detection. In order to obtain CSI, blind and training symbol (pilot tones)based channel estimation techniques are applied. In blind channel estimation technique, CSI is estimated by channel statistics without any knowledge of the transmitted data. But it can suffer from slow convergence in mobile wireless systems because of the time varying nature of channels [3]. In training symbol technique, training sequences that are also called as pilots are inserted into all of subcarriers of OFDM symbols with specific period or inserted into each OFDM symbol [4]. Compared with blind technique, pilotbased channel estimation techniques provide better resistance to fast fading and time varying channels [4–6]. However, designing of pilot tones directly affect the performance of channel estimation algorithms. Hence, optimal design for training symbols based on minimizing Cramer Rao lower bound [7], minimizing mean square error (MSE) of estimation [8–10], and maximizing lower bound capacity [11] has been considered in literature. By minimizing Cramer Rao Bound on MSE of channel, the optimal placement of pilot symbols has been considered in [7]. In [8], the number and the placement of pilot symbols and the power allocation between pilot and information symbols have been optimized in OFDM systems by minimizing error probability. Optimal pilot sequences and optimal uniformly placed pilot tones have been derived with the regard to MSE of LS estimation scheme in MIMOOFDM systems in [9]. Also in [10], optimal training design for MIMOOFDM systems with nonuniform placement of pilot tones has been addressed.
Also by utilizing from advantages of the heuristic optimization techniques, the particle swarm optimization (PSO) that is a kind of heuristic optimization technique has been used to solve some problems in communication systems. In [12], blind channel estimation technique based on PSO for powerline communication has been proposed using tracking features of PSO. In [13], continuous and discrete PSO has been used for joint channel and data estimation based on maximum likelihood principle. In [14], to decrease the effect of noise, angle domain PSOLS algorithm which exploits most significant taps technique using a suitable threshold for MIMOOFDM systems has been presented. In [15], genetic algorithm (GA) and PSObased adaptive channel estimation methodology in space time block coded (STBC) OFDM system are investigated to get optimal solution of MMSE algorithm. In this article, LS channel estimation algorithm for MIMOOFDM systems based on combtype pilot tones is described briefly. Then optimization of these pilot tones whose design is very crucial for LS channel estimation performance is proposed using PSO. And by optimizing both placement and power of pilot tones, the performance of LS channel estimation algorithm is increased.
This article is organized as follows: the MIMOOFDM system model and MSE of LS channel estimation method are presented in next section followed by particle swarm optimization, objective function of particle swarm optimization, simulation results and discussion. Finally, this article concludes with the conclusions.
MIMOOFDM system model
The block diagram of MIMOOFDM system that has N_{ t } transmit antennas, N_{ r } receive antennas is presented in Figure 1. At transmitter side, data symbols are mapped by considering modulation type. Pilot symbols are inserted to estimate channels and IFFT is taken at each transmitter antenna. Then cyclic prefix is inserted to prevent inter symbol interference. The transmitted symbol at the p th transmitter antenna includes pilot tones, B_{ p }(k), and data symbols. At the q th receiver antenna, after removing cyclic prefix and taking FFT, the received pilot tone vectors expressed as
where Y_{ q } (n) = [Y_{ q } (n_{1}),... Y_{ q } (n_{ M } )]^{T} and B_{ p } (n) = [B_{ p } (n_{1}),... B_{ p } (n_{ M } )]^{T} are vectors with the length M. h_{ q,p } is L×1 vector from p th transmit antenna to q th receive antenna. L is maximum length of channel. F denotes (1/) times the K×K unitary DFT matrix, W_{ q } (n) = [W_{ q } (n_{1}),... W_{ q } (n_{ M } )]^{T} is M×1 additive white Gaussian noise vector, K is number of sub carriers and (.)^{T} is transpose operation. Then h_{ q,p } is estimated in channel estimation block and the signal is demodulated [9, 10].
Least squares (LS) channel estimation
In order to estimate channel state information (CSI), LS is derived as follows:
Assuming training over g consecutive OFDM symbol, the sequence (1) can be written as
where and
channel impulse response h_{ q }can be estimated by LS algorithm:
where A^{t} = (A^{H} A)^{1}A^{H}. It is assumed that pilot sequences are designed such that the gK × LN_{t} sized matrix A is of full column rank LN_{t} which requires gK ≥ LN_{t}. Also M = LN_{t} must be estimated for minimum number of pilot tones.
From Equation 5, MSE of LS channel estimation can be obtained as follows
If we assume zero mean white noise we have . In this case, the MSE can be written as
According to (2), minimum MSE of LS channel estimate can be achieved if then minimum MSE can be given by
where P is a fixed power for the pilot tone, σ^{2} is noise variance, (.)^{H} is hermitian matrix, (.)^{t} is matrix pseudo inverse, tr(.) is trace, E(.) is expectation [9, 10].
Particle swarm optimization
The particle swarm optimization (PSO) is an evolutionary optimization algorithm whose mechanics are inspired by collaborative behavior of biological populations such as birds flocking and fish schooling to guide particles to search for globally optimal solutions. The advantages of the PSO are its simple implementation and it's quickly convergence ability. In PSO, simple software agent called as particles that represent as potential solutions are placed in the search space of function and evaluate the objective function at their current location. Each particle searches for better position in the search space by changing velocity according to rules that is mentioned as follows
Each particle i has position vector and velocity vector, where D is dimension of solution space. Initially, velocity and position of particles are generated randomly in search space. At each iteration, the velocity and the position of particle i on dimention d are updated as shown below
where is the previous best position of particle i, g best^{d} = (p^{1}, p^{2},...,p^{D} ) is the best position among all particles, and are uniformly distrubuted numbers in the interval [1, 0], c_{1} and c_{2} are cognitive and social parameters and w is inertia weights that are used to maintain momentum of particle [16–19]. The inertia weight w is employed to control the impact of the previous history of velocities on the current velocity, thereby influencing the trade off between global and local exploration abilities of the flying points. A large inertia weight (w) facilitates a global search, while a small inertia weight facilitates a local search. Suitable selection of the inertia weights provides a balance between global and local exploration abilities and thus requires less iteration on the average to find the optimum [17]. In our article, inertia weight w is linearly decreased from w_{max} to w_{min} according to
The PSO algorithm steps have been applied as illustrated in Figure 2. As it can be seen from the Figure 2; at first, the particles that represent pilot positions are initialized at random values between 0 and 127 for the system which has 128 subcarriers, and 0 and 63 for the system which has 64 subcarriers. All the possible combinations of particle positions are tested using fitness function that is (discussed in the "Particle swarm optimization objective function" section). If the fitness of particle's current position is better than its previous best position, the velocity and position of particle are updated using Equations 9 and 10. These processes are repeated till the stopping criteria are carried out that are 3000 iterations and 1000 iterations for the systems which have 128 subcarriers and 64 subcarriers, respectively. After the fixed number of iterations, best global particles are chosen as pilot tones positions. Besides, the powers of pilot tones are optimized as mentioned above. However for this purpose, the particles called as power of pilot tones are initialized at random values between 0 and 1.
Particle swarm optimization objective function
In order to optimize pilot tones, MSE function [seen in Equation 8] can be used as objective function for PSO algorithm. However, if this equation is used as the objective function directly, computational complexity will increase because of matrix inversion of Equation 8. In order to reduce computational complexity of Equation 8, Gerschgorin Circle theorem [20] can be used since A is full rank and Eigen values of AA^{H} is positive and real. According to the theorem, upper bound of MSE which will be used as objective function of PSO can be found as
where λ _{ i } (I = 1,...,L) is Eigen values, P b_{ ii } = (i = 1,...L) is diagonal elements of matrix (AA^{H})and R_{max} = max(R_{ i } ) is the maximum radius of the Gerschgorin disc defined as
According to the analysis in Equation 12, we can use as objective function for PSO.
Simulation results
The simulation parameters for the MIMOOFDM system with two transmit antennas and two receive antennas are given in Tables 1 and 2. L = 8 tap channel whose taps are independent, identically distributed and correlated in time with a correlation function according to Jakes model [21, 22] is chosen by assuming there are f_{d} = 5 and f_{d} = 10 Hz. Doppler frequency shifts. In simulations, we evaluate the performance of various pilot tones:

(a)
Equipowered random placed pilot tones

(b)
Equipowered and equispaced orthogonal pilot tones that are in Figure 3

(c)
Equipowered and optimized location of pilot tones using PSO that is in Figure 4

(d)
Optimized both power and location of pilot tones using PSO.
The parameters of particle swarm optimization that has been used for the optimization of location and (or) power of pilot tones are given as follows: swarm size = 20 for 128 subcarriers and swarm size = 10 for 64 subcarriers, maximum velocity = 20, inertia factor = 0.9 (start), 0.4 (end), learning factor c_{1} and c_{2} = 2.
In Figures 5 and 6, mean square error (MSE) versus SNR(dB) and bit error rate (BER) versus SNR(dB) of different pilot tones for 128 subcarriers over channels with Doppler frequency shift f_{d} = 5 Hz are shown, respectively. From Figure 5, it can be seen that in case of placing pilot tones randomly, the system has poor performance comparing to other methods because of channel estimation errors. The difference of MSE between random pilots and orthogonal pilots is approximately 10^{1} at 30 dB SNR. By locating pilot tones uniformly as such in orthogonal pilot tones, instead of placing them randomly, the estimator performance will be increased. As it is seen from Figure 6, orthogonal pilots require 5 dB less SNR than random pilots at BER value of 10^{3}. However, when pilot tones placement is optimized using PSO unlike orthogonal pilots; we can achieve a 10^{1} BER gain at increasing SNR values. Also at 30 dB SNR, BER difference between location optimized pilot tones and random pilot tones is more than 10^{1}. Besides not only optimizing placement of pilot tones but also optimizing power of them, the estimation performance will be increased much.
The MSE versus SNR(dB) and BER versus SNR(dB) of pilot tones by assuming Doppler shift is f_{d} = 40 Hz are shown in Figures 7 and 8, respectively. According to these figures, when Doppler shifts increase channel estimation errors also increase. However, optimizing pilot tones makes the system robust. Also to show the effect of number of subcarrier on system performance, BER and MSE of the systems which have 64 subcarriers are simulated in Figures 9, 10, 11, and 12. According to these figures, system performance is decreased with the reduction of the subcarrier number. Because a greater number of subcarriers can offer a better protection against multipath delay spread. For instance, when we consider to Figures 6 and 10, at 25 dB SNR value the BER difference of optimized pilot tones is approximately 10^{1}.
In addition to the performance advantages of PSO which can be seen from above figures, PSO also avoids exhaustive searches to optimize pilot tones location. For each antenna, exhaustive search of pilot position as in orthogonal pilots needs searches for 128 subcarriers and 16 pilot tones; and searches for 64 subcarrier and 8 pilot tones; conversely the number of search in PSO is just 3000 × 20 = 6 × 10^{4} for 3000 iteration and 20 particle sizes.
Here, we investigate the rough computational complexity of orthogonal and optimal placement of pilot tones in terms of N_{t} (number of transmitter antenna), N_{r} (number of receiver antennas), N_{iteration} (number of iteration in PSO), n (swarm size), and M (number of pilot tones). Placing of the pilot tones orthogonally as presented in [9] requires N_{t}N_{r}M^{4} multiplications; also this process has to compute the MSE in Equation 8 for objective function. However, computing this equation is required matrix inversion, as a results M^{3} additions and multiplications are needed additionally[23]. In contrast, using instead of using MSE in Equation 8 as the objective function, we avoid to compute this matrix inversion to optimize the pilot tones based on PSO. The proposed PSO algorithm needs (N_{t}N_{r})n multiplication for the fitness of the each position in n sized population at first stage. Velocity and position update in PSO requires µ additional multiplications per iteration. After all iterations, PSO needs N_{iteration} (N_{t}N_{r})n multiplications. As it can be seen from the above complexity analysis, optimizing location of pilot tones based on PSO has computational complexity advantage over orthogonal placement of pilot tones. The complexity of orthogonal placement of pilot tones becomes quite high when the number of subcarrier is increased. Because increasing number of subcarrier also increase the number of pilot tones in MIMOOFDM systems.
Conclusion
In this article, we have proposed particle swarm optimization (PSO) to optimize both placement and power of pilot tones which are used in LS channel estimation algorithm based on combtype pilot tones in MIMOOFDM systems. From the simulation results, we can see that optimized pilot tones derived by particle swarm optimization outperforms the orthogonal and random pilot tones significantly in terms of MSE and BER. In order to show the effect of Doppler shifts on various pilot tones performance, simulations are carried out over channels with different Doppler shifts values. Furthermore, in objective function of PSO there is no need of computing matrix inversion which is needed to compute MSE values. For this reason this approach has less computational complexity.
Abbreviations
 BER:

bit error rate
 CSI:

channel state information
 GA:

genetic algorithm
 LS:

least square
 MIMO:

multiinput multioutput
 MSE:

mean square error
 OFDM:

orthogonal frequency division multiplexing
 PSO:

particle swarm optimization
 STBC:

space time block coded.
References
 1.
Cimini LJ Jr: Analysis and simulation of digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans Commun 1985,3(7):665675.
 2.
Sampath H, Talwar S: A fourthgeneration MIMOOFDM broadband wireless systems: design performance and trial results. IEEE Commun Mag 2002,40(9):143149. 10.1109/MCOM.2002.1031841
 3.
Saux BL, Helard M: Iterative channel estimation based on linear regression for MIMO OFDM system. In Wireless and Mobile Computing, Networking and Comm Conference. Canada, Montreal; 2006:356361.
 4.
Coleri S, Ergen M, Puri A: A Bahai, Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Trans Broadcast 2002,48(3):223229. 10.1109/TBC.2002.804034
 5.
Edfors O, Van de Beek JJ, Sandell M: SK Wilson, PO Börjesson, OFDM channel estimation by singular value decomposition. IEEE Trans Commun 1998, 46: 931939. 10.1109/26.701321
 6.
Negi R, Cioffi J: Pilot tone selection for channel estimation in a mobile OFDM system. IEEE Trans Consum Electron 1998,44(3):11221128. 10.1109/30.713244
 7.
Dong M, Tong L: Optimal design and placement of pilot symbols for channel estimation. IEEE Trans Signal Process 2002,50(12):30553068. 10.1109/TSP.2002.805504
 8.
Cai X, Giannakis GB: Error probability minimizing pilots for OFDM with MPSK modulation over Rayleigh fading channels. IEEE Trans Veh Technol 2004,53(1):146155. 10.1109/TVT.2003.819624
 9.
Barhumi I, Leus G, Moonen M: Optimal training design for MIMO OFDM systems in mobile wireless channels. IEEE Trans Signal Process 2003,51(6):16151623. 10.1109/TSP.2003.811243
 10.
Hu D, Yang L, He L, Shi Y: Optimal pilot sequence design for multiple input multiple output OFDM systems. In IEEE Global Telecom Conference (GLOBECOM'05). Saint Louis, USA; 2005:22602264.
 11.
Adireddy S, Tong L, Viswanathan H: Optimal placement of training for frequency selective block fading channels. IEEE Trans Inform Theory 2002, 48: 13381353.
 12.
LagunaSanchez GA, BarronFernandez R: Blind channel estimation for powerline communications by a PSOinspired algorithm. In IEEE Latin Conf on Commun (LATINCOM 09). Medellin, Colombia; 2009:16.
 13.
Zubair M, Choudhry MAS, Naveed A, Qureshi IM: Joint channel and data estimation using particle swarm optimization. IEICE Trans Commun 2008,E91B(9):30333036. 10.1093/ietcom/e91b.9.3033
 14.
Xu P, Wang J, Qi F: Pilotbased angle domain channnel estimation for MIMOOFDM systems. In Proceedings of the Inernational Conference on Communities and Mobile Computing. Yunnan, China; 2009:4750.
 15.
D'Orazio L, Sacchi C, Donelli M: Adaptive channel estimation for STBCOFDM systems based on natureinspired optimization strategies. In Proceedings of the 3rd International Workshop of Multiple Access Communications (MACOM 2010). Barcelona, Spain; 2010:188198.
 16.
Kennedy J, Eberhart R: Particle swarm optimization. In IEEE International Conference on Neural Networks IV. Perth, Australia; 1995:19421948.
 17.
Shi YH, Eberhart RC: A modified particle swarm optimizer. In Proceedings of 1998 IEEE International Conference on Evolutionary Computation. Anchorage, USA; 1998:6973.
 18.
Eberhart RC, Shi Y: Comparision between genetic algorithms and particle swarm optimization. Lecture notes in computer science 1998, 1447: 611616. 10.1007/BFb0040812
 19.
Zhan ZH, Zhang J, Li Y, ShuHung H: Adaptive particle swarm optimization. IEEE Trans Syst Man Cybernet 2009,39(6):13621381.
 20.
Horn RA, Jonhson CR: Cambridge University Press, Cambridge. Matrix Analysis 1985.
 21.
Jakes WC Microwave Mobile Communications, Wiley, New York; 1975.
 22.
Dent P, Bottomley GE, Croft T: Jakes fading model revisited. Electron Lett 1993,29(13):11621163. 10.1049/el:19930777
 23.
Golub GH, Loan CFV Matrix Computations, Hopkins University Press, Baltimore; 1996.
Author information
Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ original submitted files for images
Below are the links to the authors’ original submitted files for images.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Seyman, M.N., Taşpinar, N. Particle swarm optimization for pilot tones design in MIMOOFDM systems. EURASIP J. Adv. Signal Process. 2011, 10 (2011). https://doi.org/10.1186/16876180201110
Received:
Accepted:
Published:
Keywords
 MIMOOFDM
 channel estimation
 particle swarm optimization