Compressive sampling of swallowing accelerometry signals using timefrequency dictionaries based on modulated discrete prolate spheroidal sequences
 Ervin Sejdić^{1}Email author,
 Azime Can^{1},
 Luis F Chaparro^{1},
 Catriona M. Steele^{2} and
 Tom Chau^{3}
https://doi.org/10.1186/168761802012101
© Sejdić et al; licensee Springer. 2012
Received: 30 November 2011
Accepted: 4 May 2012
Published: 4 May 2012
Abstract
Monitoring physiological functions such as swallowing often generates large volumes of samples to be stored and processed, which can introduce computational constraints especially if remote monitoring is desired. In this article, we propose a compressive sensing (CS) algorithm to alleviate some of these issues while acquiring dualaxis swallowing accelerometry signals. The proposed CS approach uses a timefrequency dictionary where the members are modulated discrete prolate spheroidal sequences (MDPSS). These waveforms are obtained by modulation and variation of discrete prolate spheroidal sequences (DPSS) in order to reflect the timevarying nature of swallowing acclerometry signals. While the modulated bases permit one to represent the signal behavior accurately, the matching pursuit algorithm is adopted to iteratively decompose the signals into an expansion of the dictionary bases. To test the accuracy of the proposed scheme, we carried out several numerical experiments with synthetic test signals and dualaxis swallowing accelerometry signals. In both cases, the proposed CS approach based on the MDPSS yields more accurate representations than the CS approach based on DPSS. Specifically, we show that dualaxis swallowing accelerometry signals can be accurately reconstructed even when the sampling rate is reduced to half of the Nyquist rate. The results clearly indicate that the MDPSS are suitable bases for swallowing accelerometry signals.
Keywords
compressive sensing swallowing accelerometry modulated discrete prolate spheroidal sequences timefrequency dictionary matching pursuit1 Introduction
Continuous monitoring of physiological functions such as swallowing can pose severe constraints on data acquisition and processing systems. Even when sampling physiological signals at low rates (e.g., 250 Hz), we end up with close to a million of samples in the first hour of monitoring. Similar computational burdens are everpresent in telemedicine, and in recent years we have witnessed numerous efforts to deal with this problem. One such effort is to compress the acquired signals immediately upon sampling using various schema (e.g. [1]). The other is to rethink the way we acquire the data, and a number of recent publications have begun looking at this approach (e.g., [2–5]).
The idea of compressive sensing (CS) has gained considerable attention in recent years. The main idea behind CS is to diminish the number of steps involved when acquiring data by combining sampling and compression into a single step [3, 4]. Specifically, CS enables one to acquire the data at subNyquist rates, and recover it accurately from such sparse samples [3].
In this article, we propose an approach for CS of swallowing accelerometry signals based on a timefrequency dictionary. In particular, the members of the dictionary are recently proposed modulated discrete spheroidal sequences (MDPSS) [6, 7]. The bases within the timefrequency dictionary are obtained by modulation and variation of the bandwidth of discrete prolate spheroidal sequences (DPSS) to reflect the vaying timefrequency nature of many biomedical signals, including the swallowing acclerometry signals considered in this article. Using the proposed approach, we carry out a numerical analysis of synthetic test signals and real swallowing accelerometry signals. The numerical analysis using the synthetic test signals showed that the CS approach based on MDPSS was more accurate than the CS approach based on DPSS (e.g., [7, 8]). Additionally, the analysis of swallowing accelerometry signals showed that we can obtain 90% crosscorrelation between the reconstructed signals and the actual signals using only 50% percent of samples. This has been observed for three different types of swallowing tasks.
The article is organized as follows: Section 2 describes swallowing accelerometry and outlines the advantages of this approach for detecting swallowing difficulties. In Section 3, we describe the proposed approach for CS using the timefrequency based dictionary consisting of MDPSS bases. Section 4 reports the data analysis steps that we carried out to obtain the reported results, which are presented in Section 5 along with the discussion of the same results. The conclusions are drawn in Section 6.
2 Swallowing accelerometry
Swallowing (deglutition) is a complex process of transporting food or liquid from the mouth to the stomach consisting of four phases: oral preparatory, oral, pharyngeal, and esophageal [9]. Dysphagic patients (i.e., patients suffering from swallowing difficulty) usually deviate from the welldefined pattern of healthy swallowing. Dysphagia frequently develops in stroke patients, head injured patients, and patients with others with paralyzing neurological diseases [10]. Patients with dysphagia are prone to choking and aspiration (the entry of material into the airway below the true vocal folds) [9]. Aspiration and dysphagia may lead to serious health sequelae including malnutrition and dehydration [11, 12], degradation in psychosocial wellbeing [13, 14], aspiration pneumonia [15], and even death [16].
The videofluoroscopic swallowing study (VFSS) is used widely in today's dysphagia management and it represent the gold standard for assessment [9, 17]. However, VFSS requires expensive Xray equipment as well as expertise from speechlanguage pathologists and radiologists. Hence, only a limited number of institutions can offer VFSS and the procedure has been associated with long waiting lists [18, 19]. In addition, daytoday monitoring of dysphagia is crucial due to the fact that the severity of dysphagia can fluctuate over time and VFSS is not suitable for such daytoday monitoring.
Cervical auscultation is a promising noninvasive tool for the assessment of swallowing disorders [20] involving the examination of swallowing signals acquired via a stethoscope or other acoustic and/or vibration sensors during deglutition [21]. Swallowing accelerometry is one such approach and employs an accelerometer as a sensor during cervical auscultation. Swallowing accelerometry has been used to detect aspiration in several studies, which have described a shared pattern among healthy swallow signals, and verified that this pattern is either absent, delayed or aberrant in dysphagic swallow signals [22–34].
However, these previous studies used singleaxis accelerometers and exclusively monitored vibrations propagated in the anteriorposterior direction at the cervical region. Proper hyolaryngeal movement with precise timing during bolus transit is vital for airway protection in swallowing [9]. Since the motion of the hyolaryngeal structure during swallowing occurs in both anteriorposterior (AP) and superiorinferior (SI) directions, the employment of dualaxis accelerometry seems well motivated. Since correlation has been reported between the extent of laryngeal elevation and the magnitude of the AP swallowing accelerometry signal [35], it is hypothesized that vibrations in the SI axis also capture useful information about laryngeal elevation. From a physiological stand point, the SI axis appears to be as worthy of investigation as the AP axis because the maximum excursion of the the hyolaryngeal structure during swallowing is of similar magnitude in both the anterior and superior directions [36, 37]. Recent contributions have indeed confirmed that dualaxis accelerometers yield more information and enhance analysis capabilities [38–43].
2.1 Data
Sample signals used in this article were collected from 408 participants (ages 1865) over a 3 month period from a public science centre in Toronto, Ontario, Canada. All participants provided written consent and had no documented swallowing disorders. The research ethics boards of the Toronto Rehabilitation Institute and Holland Bloorview Kids Rehabilitation Hospital (both located in Toronto, Ontario, Canada) approved the study protocol.
To collect data from participants, we used a dualaxis accelerometer (ADXL322, Analog Devices), which was attached to the participant's neck (anterior to the cricoid cartilage) using doublesided tape. The axes of acceleration were aligned to the anteriorposterior and superiorinferior directions. Data were bandpass filtered in hardware with a pass band of 0.13,000 Hz and sampled at 10 kHz using a custom LabVIEW program running on a laptop computer. With the accelerometer attached, each participant was cued to perform five saliva swallows (i.e., dry swallows), five water swallows by cup with their chin perpendicular to the floor (i.e., wet swallows) and five water swallows in the chintucked position. The entire data collection session lasted 15 min per participant.
3 Proposed scheme
where T_{ s } is the sampling period and Ω_{max} represents the maximum frequency present in the signal. In other words, the Shannon sampling theorem states that in order to ensure accurate representation and reconstruction of a signal with Ω_{max}, we should sample it at least at 2Ω_{max} samples per second (i.e., the Nyquist rate). However, many recent publications have challenged this approach for a number of reasons (e.g., [44, 45]). First, by using the Shannon sampling theorem we rely on bases of infinite support, while we generally reconstruct signal samples in the finite domain [44]. Second, large bandwidth values can severely constraint sampling architectures [45]. Third, even when we consider signals with a relatively low bandwidth values such as swallowing accelerometry signals, continuous monitoring of swallowing function can produce large number of redundant samples, which severely constraints our processing efforts.
where η is the expected noise of measurements, x_{0} counts the number of nonzero entries of x and  • _{2} is the Euclidian norm. Unfortunately, the above minimization is not suitable for many applications as it is NPhard [46]. To avoid the computational burden, approaches like thresholding, (orthogonal) matching pursuit and basis pursuits have been proposed [46]. In this article, we will focus on the matching pursuit [47].
Given the CS framework, the immediate question is how to define the sensing matrix Φ, that is the bases used in the recovery of the signal. Most commonly used sensing matrices are random matrices with independent identically distributed (i.i.d.) entries formed by sampling either a Gaussian distribution or a symmetric Bernoulli distribution [48]. Previous publications have shown that these matrices can recover the signal with high probability [48]. However, when dealing with biomedical signals, we would like to "precisely" recover the signals (i.e., with a very small error). Therefore, we propose to use a timefrequency dictionary (also known as frames [49]) based on modulated discrete prolate spheroidal sequences (MDPSS).
3.1 Timefrequency dictionaries based on MDPSS
where n = 0, ± 1, ± 2, . . . and k = 0, 1, . . . , N − 1.
where ω_{ m } = 2πf_{ m } is a modulating frequency. It is easy to see that MDPSS are also doubly orthogonal, obey the same Equation (4) and are bandlimited to the frequency band [−W + ω_{ m } : W + ω_{ m } ].
However, in practical applications, exact frequency band is known only with a certain degree of accuracy and usually evolves in time. Therefore, only some relatively wide frequency band is expected to be known. In such situations, an approach based on onebandfitsall may not produce a sparse and accurate approximation of the signal. In order to resolve this problem it was suggested to use a band of bases with different widths to account for timevarying bandwidths [53]. However, such representation once again ignores the fact that the actual signal bandwidth could be much less then 2W dictated by the bandwidth of the DPSS. In order to provide further robustness to the estimation problem we suggest to use of a timefrequency dictionary containing bases which reflect various bandwidth scenarios.
To construct this timefrequency dictionary, it is assumed that an estimate of the maximum frequency is available. The first few bases in the dictionary are the actual traditional DPSS with bandwidth W. Additional bases could be constructed by partitioning the band [−ω; ω] into K subbands with the boundaries of each subband given by [ω_{ k }; ω_{k+1}], where 0 ≤ k ≤ K − 1, ω_{k+1}> ω_{ k }, and ω_{0} = −ω, ω_{K1}= ω. Hence, each set of MDPSS has a bandwidth equal to ω_{k+1}− ω_{ k }and a modulation frequency equal to ω_{ m }= 0.5(ω_{ k }+ ω_{k+1}).
3.2 Matching pursuit and MDPSSbased frames
As mentioned at the beginning of Section 3, the CS approaches can be NPhard, which are not practically viable. Fortunately, efficient algorithms, known generically as matching pursuit [47, 49], can be used to avoid some of the computational burden associated with the CS. The main feature of the algorithm is that when stopped after a few steps, it yields an approximation using only a few basis functions [47]. The matching pursuit decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions [47]. It is a general, greedy, sparse function approximation scheme with the squared error loss, which iteratively adds new functions (i.e. basis functions) to the linear expansion. In comparison to a basis pursuit it significantly reduces the computational complexity, since the basis pursuit minimizes a global cost function over all bases present in the dictionary [47]. If the dictionary is orthogonal the method works perfectly. Also, to achieve compact representation of the signal, it is necessary that the atoms are representative of the signal behaviour and that the appropriate atoms from the dictionary are chosen.
where ${\alpha}_{k}=\left({R}^{\left(k1\right)}\left(m\right),{\varphi}_{k}\left(m\right)\right)/\left\right{\varphi}_{k}\left(m\right){}^{\mathsf{\text{2}}}$. The process continues till the norm of the residual R^{(k)}(m) does not exceed required margin of error ε > 0: R^{(k)}(m) ≤ ε[47].
An alternative stopping rule can mandate that the number of bases, ${\mathfrak{n}}_{\mathfrak{B}}$, needed for signal approximation should satisfy ${\mathfrak{n}}_{\mathfrak{B}}\le \mathcal{K}$. In previous contributions (e.g., [6]), is set equal to ⌈2NW ⌉ + 1 to compare the performance of the MDPSSbased frames with DPSS.
where ${\varphi}_{l}$ are L bases from the dictionary with the strongest contributions.
3.3 Estimation of sampling times
A thorough description of the procedure can be found in [2, Appendices 1 and 2].
4 Data analysis
4.1 Synthetic test signals
where 0 ≤ n < N, T_{ s } = 1/256, N = 256, A_{ i } is uniformly drawn from random values in 0[2] and f_{ i } ~ N(30, 10^{2}). ζ(n) represents white Gaussian noise and σ is its standard deviation.
where A^{†} denotes the pseudoinverse of a matrix; U(n, k) is the matrix containing K bases (i.e., DPSS) and each sequence is of length N; m denotes the time instances at which the samples are available.
In the second experiment, we vary the number of available samples from 50 samples to 200 samples in increments of 10 samples in order to understand how the number of samples affects the overall accuracy of the proposed scheme. The samples are uniformly distributed, and the normalized halfbandwidth is set to 0.30. The lower boundary of 50 samples denotes a very aggressive scheme, as it represents approximately 20% of the original samples. On the other hand, the upper boundary of 200 samples represents a very lenient scheme for compressive sampling since it represents approximately 78% of the original samples. Additionally, we use the following four SNR values: 5, 15, 25 and 35 dB. The accuracy of the proposed CSapproach is examined using a 7 and 15band MDPSS based dictionaries against the CSapproach based on DPSS. The accuracy metric is the MSE value defined by Equation (30) and 1,000 realizations are used to obtain its values.
The third experiment examines the effects of nonuniform sampling times on the overall performance of the CSbased schemes. In particular, we use 100 nonuniform samples and the SNR values were incremented by 1 dB from 0 to 30 dB. Also, the normalized halfbandwidth is varied in 0.025 increments from 0.30 to 0.375. The accuracy of the proposed approach based on MDPSS is compared against the CSapproach based on DPSS. Specifically, we use 7 and 15band MDPSSbased timefrequency dictionaries. The accuracy metric is again the MSE value defined by Equation (30). 1,000 realizations are used again to obtain the MSE values, and for each realization new 100 time positions are achieved.
4.2 Swallowing accelerometry signals
Using the proposed scheme, we analyze how accurately we can recover dualaxis swallowing accelerometry signals from sparse samples. Specifically, we assume two different scenarios: only 30% of the original samples are available and only 50% of the original samples are available. In both cases, we examine whether the uniform or nonuniform subNyquist rates have significant effects on the overall effectiveness of the proposed scheme. In this numerical experiment, we use a 10band MDPSS based dictionary with the normalized halfbandwidth equal to 0.15. To evaluate the effectiveness of the proposed approach when considering dualaxis swallowing accelerometry signals, we adopted performance metrics used in other biomedical applications (e.g., [5, 55, 56]). Those metrics are:

Crosscorrelation (CC): CC is used to evaluate the similarity between the original and the reconstructed signal, and is defined as:$\mathsf{\text{CC}}=\frac{{\sum}_{n=1}^{N}\left(x\left(n\right){\mu}_{x}\right)\phantom{\rule{0.3em}{0ex}}\left(\widehat{x}\left(n\right){\mu}_{\widehat{x}}\right)}{\sqrt{{\sum}_{n=1}^{N}{\left(x\left(n\right){\mu}_{x}\right)}^{2}}\sqrt{{\sum}_{n=1}^{N}{\left(\widehat{x}\left(n\right){\mu}_{\widehat{x}}\right)}^{2}}}\times 100\%$(32)
where x(n) is the original signal and $\widehat{x}\left(n\right)$ represents a reconstructed signal. In addition, µ_{ x } and ${\mu}_{\widehat{x}}$ denote the mean values of x(n) and $\widehat{x}\left(n\right)$, respectively.

Percent root difference (PRD): PRD measures distortion in reconstructed biomedical signals, and is defined as:$\mathsf{\text{PRD}}\left(\%\right)=\sqrt{\frac{{\sum}_{n=1}^{N}{\left(x\left(n\right)\widehat{x}\left(n\right)\right)}^{2}}{{\sum}_{n=1}^{N}{x}^{2}\left(n\right)}}\times 100\%$(33)

Root mean square error (RMSE): RMSE also measures distortion and is often beneficial to minimize this metric when finding the optimal approximation of the signal. RMSE is defined as:$\mathsf{\text{RMSE}}=\sqrt{\frac{{\sum}_{n=1}^{N}{\left(x\left(n\right)\widehat{x}\left(n\right)\right)}^{2}}{N}}$(34)

Maximum error (MAXERR): MAXERR is used to understand the local distortions in the reconstructed signal, and it particularly denotes the largest error between the samples of the original signal and the reconstructed signal. The metric is defined as:$\mathsf{\text{MAXERR}}=\text{max}\left(x\left(n\right)\widehat{x}\left(n\right)\right)$(35)
In order to establish statistical significance of our results, a nonparametric inferential statistical method known as the MannWhitney test was used [57], which assesses whether observed samples are drawn from a single population (i.e., the null hypothesis). For multigroup testing, the extension of the MannWhitney test known as the KruskalWallis was used [58]. A 5% significance was used.
5 Results and discussion
In this section, we present the results of numerical experiments and discuss those results. First, we will discuss the results based on the synthetic test signals. In the second part, we will discuss the results of numerical experiments considering the application of the proposed approach to dualaxis swallowing accelerometry signals.
5.1 Synthetic test signals
5.2 CS of swallowing accelerometry signals
Performance of the proposed method for recovery of dualaxis swallowing accleremetry signals when considering 30% of samples and a uniform sampling scheme
Dry swallows  Wet swallows  WCD swallows  

Metric  AP  SI  AP  SI  AP  SI 
CC (%)  96.6 ± 4.30  96.8 ± 4.28  92.8 ± 9.13  93.3 ± 8.85  90.5 ± 11.1  97.4 ± 5.54 
PRD (%)  23.2 ± 12.3  21.8 ± 13.2  33.5 ± 19.6  31.7 ± 20.2  37.8 ± 23.4  17.1 ± 15.6 
RMSE  0.04 ± 0.03  0.06 ± 0.04  0.05 ± 0.04  0.10 ± 0.08  0.12 ± 0.08  0.11 ± 0.08 
MAXERR  0.34 ± 0.40  0.67 ± 0.69  0.56 ± 0.57  1.15 ± 1.06  1.51 ± 1.24  1.36 ± 1.19 
Performance of the proposed method for recovery of dualaxis swallowing accleremetry signals when considering 30% of samples and a nonuniform sampling scheme
Dry swallows  Wet swallows  WCD swallows  

Metric  AP  SI  AP  SI  AP  SI 
CC (%)  89.5 ± 7.17  92.5 ± 6.60  84.5 ± 11.3  87.8 ± 11.3  84.3 ± 13.7  94.4 ± 7.35 
PRD (%)  43.9 ± 14.9  36.5 ± 15.7  53.3 ± 20.2  46.2 ± 22.5  52.4 ± 26.1  30.0 ± 17.4 
RMSE  0.07 ± 0.04  0.10 ± 0.06  0.09 ± 0.04  0.15 ± 0.09  0.17 ± 0.11  0.23 ± 0.13 
MAXERR  0.55 ± 0.53  0.88 ± 0.73  0.72 ± 0.62  1.35 ± 1.18  1.93 ± 1.60  2.38 ± 1.96 
Performance of the proposed method for recovery of dualaxis swallowing accleremetry signals when considering 50% of samples and a uniform sampling scheme
Dry swallows  Wet swallows  WCD swallows  

Metric  AP  SI  AP  SI  AP  SI 
CC (%)  98.1 ± 2.53  98.1 ± 2.83  95.8 ± 5.99  95.9 ± 5.69  94.1 ± 7.70  98.5 ± 3.66 
PRD (%)  17.3 ± 8.87  16.4 ± 10.0  24.7 ± 14.1  23.6 ± 14.8  28.3 ± 17.6  12.6 ± 11.5 
RMSE  0.03 ± 0.02  0.04 ± 0.03  0.04 ± 0.03  0.08 ± 0.06  0.09 ± 0.06  0.08 ± 0.06 
MAXERR  0.26 ± 0.29  0.51 ± 0.52  0.41 ± 0.42  0.87 ± 0.77  1.12 ± 0.85  1.02 ± 0.87 
Performance of the proposed method for recovery of dualaxis swallowing accleremetry signals when considering 50% of samples and a nonuniform sampling scheme
Dry swallows  Wet swallows  WCD swallows  

Metric  AP  SI  AP  SI  AP  SI 
CC (%)  95.8 ± 4.44  96.4 ± 4.23  92.2 ± 8.77  93.2 ± 8.30  90.4 ± 10.6  97.1 ± 5.23 
PRD (%)  26.4 ± 11.6  23.8 ± 12.4  35.4 ± 17.4  32.1 ± 18.2  38.4 ± 21.6  19.7 ± 14.1 
RMSE  0.04 ± 0.03  0.07 ± 0.04  0.06 ± 0.04  0.11 ± 0.07  0.12 ± 0.08  0.14 ± 0.09 
MAXERR  0.38 ± 0.37  0.69 ± 0.64  0.55 ± 0.54  1.08 ± 0.93  1.53 ± 1.22  1.69 ± 1.42 
Several observations are in order. First, we achieved very high agreement between the reconstructed data and the original signals with uniformly spread out samples. Statistically higher results were achieved with 50% of samples than with 30% of samples when considering the CCs results (p << 0.01), which resulted in statistically lower errors with 50% of samples when considering the three error metrics (p << 0.01).
Second, statistically worse results have been obtained when using nonuniform (random) sampling times (p << 0.01) in comparison to uniform sampling for both 30% of samples and 50% of samples. This result is expected, as it becomes more challenging to recover the signal accurately with nonuniform samples. Additionally, it is difficult to recover swallowing vibrations accurately, given that these vibrations are shortduration transients. Unless the nonuniform samples capture the behavior of these shortduration transients, a larger recovery error is achieved. However, with 50% of samples, we still obtain very high agreement between the recovered data and the original signals. As a matter of fact, the results obtained with 50% of samples with nonuniform sampling are comparable to the results obtained with 30% of samples when using uniform sampling.
Third, amongst the considered swallowing tasks, dry swallows tend to be recovered most accurately, followed by the wet swallows and lastly by the wet chin down swallows. From a physiological point of view, this is expected since during the dry swallowing manoeuver only small amounts of liquid (i.e., saliva) are swallowed. It is also expected that wet chin down swallows will be more difficult to recover due to the complex maneuvering required during these swallows, which may introduce signal components otherwise not present during the dry and/or wet swallowing tasks.
Therefore, based on the presented results, we can state with high confidence that CS based on the timefrequency dictionary containing MDPSS is suitable scheme for dualaxis swallowing acceleromtry signals. Particularly accurate results have been obtained when we use 50% of samples. We expect that further improvements can be achieved by optimizing the parameters of the recovery process with respect to the considered error metrics.
6 Conclusion
In this article, a CS algorithm for accurate reconstruction of dualaxis swallowing accelerometry signals from sparse samples was proposed. The proposed algorithm uses a timefrequency dictionary based on MDPSS. The modulating of DPSS was performed in order to account for the timevarying nature of the dualaxis swallowing accelerometry signals. The proposed CS algorithm was tested using both synthetic test signals and swallowing accelerometry signals. In both cases, we achieved very accurate representations with MDPSS, which makes these bases suitable for CS approaches of swallowing accelerometry signals. Specifically, we showed that even when the dualaxis swallowing accelerometry signals were subsampled at by 50% below the Nyquist rate, we still achieved very accurate representations of these signals.
Declarations
Authors’ Affiliations
References
 Brechet L, Lucas MF, Doncarli C, Farina D: Compression of biomedical signals with mother wavelet optimization and bestbasis wavelet packet selection. IEEE Trans Biomed Eng 2007, 54(12):21862192.View ArticleGoogle Scholar
 Vetterli M, Marziliano P, Blu T: Sampling signals with finite rate of innovation. IEEE Trans Signal Process 2002, 50(6):14171428. 10.1109/TSP.2002.1003065MathSciNetView ArticleGoogle Scholar
 Donoho DL: Compressed sensing. IEEE Trans Inf Theory 2006, 52(4):12891306.MathSciNetView ArticleGoogle Scholar
 Dai W, Milenković O: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory 2009, 55(5):22302249.View ArticleGoogle Scholar
 Poh KK, Marziliano P: Compressive sampling of EEG signals with finite rate of innovation. EURASIP J Adv Signal Process 2010, 2010: 12. Article ID 183105View ArticleGoogle Scholar
 Sejdić E, Luccini M, Primak S, Baddour K, Willink T: Channel estimation using dpss based frames. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008. Las Vegas, Nevada, USA; 2008:28492852.View ArticleGoogle Scholar
 Oh J, Senay S, Chaparro LF: Signal reconstruction from nonuniformly spaced samples using evolutionary Slepian transformbased POCS. EURASIP J Adv Signal Process 2010, 2010: 12. Article ID 367317View ArticleGoogle Scholar
 Davenport MA, Wakin MB: Reconstruction and cancellation of sampled multiband signals using discrete prolate spheroidal sequences. In Proc of Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS11). Edinburgh, Scotland, UK; 2011:61.Google Scholar
 Logemann JA: Evaluation and Treatment of Swallowing Disorders. 2nd edition. PROED, Austin, Texas, USA; 1998.Google Scholar
 Miller AJ: The Neuroscienti c Principles of Swallowing and Dysphagia. Singular Publishing Group, San Diego, USA; 1999.Google Scholar
 Curran JE: Nutritional Considerations Dysphagia: Diagnosis and Management. ButterworthHeinemann, Boston, USA; 1992:255266.Google Scholar
 Smithard DG, O'Neill PA, Park C, Morris J, Wyatt R, England R, Martin DF: Complications and outcome after acute stroke: does dysphagia matter? Stroke 1996, 27(70):12001204.View ArticleGoogle Scholar
 Riensche LL, Lang K: Treatment of swallowing disorders through a multidisciplinary team approach. Educat Gerontol 1992, 18(3):277284. 10.1080/0360127920180309View ArticleGoogle Scholar
 Ekberg O, Hamdy S, Woisard V, WuttgeHannig A, Ortega P: Social and psychological burden of dysphagia: Its impact on diagnosis and treatment. Dysphagia 2002, 17(2):139146. 10.1007/s0045500101135View ArticleGoogle Scholar
 Miller RM: Clinical Examination for Dysphagia Dysphagia: Diagnosis and Management. ButterworthHeinemann, Boston, USA; 1992:143162.Google Scholar
 Ding R, Logemann JA: Pneumonia in stroke patients: a retrospective study. Dysphagia 2000, 15(2):5157.View ArticleGoogle Scholar
 Tabaee A, Johnson P, Gartner CJ, Kalwerisky K, Desloge RB, Stewart M: Patientcontrolled comparison of flexible endoscopic evaluation of swallowing with sensory testing (FEESST) and videofluoroscopy. Laryngoscope 2006, 116(5):821825. 10.1097/01.mlg.0000214670.40604.45View ArticleGoogle Scholar
 Ramsey DJC, Smithard DG, Kalra L: Can pulse oximetry or a bedside swallowing assessment be used to detect aspiration after stroke? Stroke 2006, 37(12):29842988. 10.1161/01.STR.0000248758.32627.3bView ArticleGoogle Scholar
 Steele C, Allen C, Barker J, Buen P, French R, Fedorak A, Day S, Lapointe J, Lewis L, MacKnight C, McNeil S, Valentine J, Walsh L: Dysphagia service delivery by speechlanguage pathologists in Canada: results of a national survey. Canadian J Speech Lang Pathol Audiol 2007, 31(4):166177.Google Scholar
 Cichero JAY, Murdoch BE: The physiologic cause of swallowing sounds: answers from heart sounds and vocal tract acoustics. Dysphagia 1998, 13(1):3952. 10.1007/PL00009548View ArticleGoogle Scholar
 Youmans SR, Stierwalt JAG: An acoustic profile of normal swallowing. Dysphagia 2005, 20(3):195209. 10.1007/s0045500500131View ArticleGoogle Scholar
 Reddy NP, Costarella BR, Grotz RC, Canilang EP: Biomechanical measurements to characterize the oral phase of dysphagia. IEEE Trans Biomed Eng 1990, 37(4):392397. 10.1109/10.52346View ArticleGoogle Scholar
 Reddy NP, Canilang EP, Casterline J, Rane MB, Joshi AM, Thomas R, Candadai R: Noninvasive accelaration measurements to characterize the pharyngeal phase of swallowing. J Biomed Eng 1991, 13: 379383. 10.1016/01415425(91)900183View ArticleGoogle Scholar
 Prabhu DNF, Reddy NP, Canilang EP: Neural networks for recognition of acceleration patterns during swallowing and coughing. In Proc of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Engineering Advances: New Opportunities for Biomedical Engineers). Volume 2. Baltimore, MD, USA; 1994:11051106.View ArticleGoogle Scholar
 Gupta V, Prabhu DNF, Reddy NP, Canilang EP: Spectral analysis of acceleration signals during swallowing and coughing. Proc of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Engineering Advances: New Opportunities for Biomedical Engineers) 1994, 2: Baltimore, MD, USA, 12921293.View ArticleGoogle Scholar
 Suryanarayanana S, Reddy NP, Canilang EP: A fuzzy logic diagnosis system for classification of pharyngeal dysphagia. Int J BioMed Comput 1995, 38(3):207215. 10.1016/S00207101(05)800029View ArticleGoogle Scholar
 Reddy NP, Thomas R, Canilang EP, Casterline J: Toward classification of dysphagic patients using biomechanical measurements. J Rehabil Res Dev 1994, 31(4):335344.Google Scholar
 Reddy NP, Katakam A, Gupta V, Coppenger J, Simcox D, Marmon C, Canilang EP, Stephenson L, Barengo R, England E, Gavula J, Royed V, Freshwater B, Whitlock M, Hooverman M: Noninvasive measurement of dysphagia: simultaneous acceleration measurements during videofluorography. In Proc of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Bridging Disciplines for Biomedicine). Volume 1. Amsterdam, Netherlands; 1996:142143.View ArticleGoogle Scholar
 Joshi AC, Reddy NP: Fractal analysis of acceleration signals due to swallowing. In Proc of the First Joint BMES/EMBS Conference. Volume 2. Atlanta, GA, USA; 1999:12.Google Scholar
 Das A, Reddy NP, Narayanan J: Hybrid fuzzy logic committee neural networks for recognition of swallow acceleration signals. Comput Methods Prog Biomed 2001, 64(2):8799. 10.1016/S01692607(00)000997View ArticleGoogle Scholar
 Chau T, Casas M, Berall G, Kenny D: Testing the stationarity and normality of paediatric aspiration signals. In Proc of the Second Joint EMBS/BMES Conference. Volume 1. Houston, TX, USA; 2002:186187.Google Scholar
 Chau T, Chau D, Casas M, Berall G, Kenny DJ: Investigating the stationarity of paediatric aspiration signals. IEEE Trans Neural Sys Rehabil Eng 2005, 13(1):99105. 10.1109/TNSRE.2004.841384View ArticleGoogle Scholar
 Lee J, Blain S, Casas M, Kenny D, Berall G, Chau T: A radial basis classifier for the automatic detection of aspiration in children with dysphagia. J NeuroEng Rehabil 2006, 3(140):17.Google Scholar
 Lee J, Blain S, Casas M, Kenny D, Berall G, Chau T: A radial basis function classifier for pediatric aspiration detection. In Proc of 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06). Volume 2006. New York City; 2006:35533556.Google Scholar
 Reddy NP, Katakam A, Gupta V, Unnikrishnan R, Narayanan J, Canilang EP: Measurements of acceleration during videofluorographic evaluation of dysphagic patients. Med Eng Phys 2000, 22(6):405412. 10.1016/S13504533(00)000473View ArticleGoogle Scholar
 Kim Y, McCullough GH: Maximum hyoid displacement in normal swallowing. Dysphagia 2008, 23(3):274279. 10.1007/s004550079135yView ArticleGoogle Scholar
 Ishida R, Palmer JB, Hiiemae KM: Hyoid motion during swallowing: factors affecting forward and upward displacement. Dysphagia 2002, 17(4):262272. 10.1007/s0045500200645View ArticleGoogle Scholar
 Lee J, Steele CM, Chau T: Time and timefrequency characterization of dualaxis swallowing accelerometry signals. Physiol Meas 2008, 29(9):11051120. 10.1088/09673334/29/9/008View ArticleGoogle Scholar
 Sejdić E, Steele CM, Chau T: Segmentation of dualaxis swallowing accelerometry signals in healthy subjects with analysis of anthropometric effects on duration of swallowing activities. IEEE Trans Biomed Eng 2009, 56(4):10901097.View ArticleGoogle Scholar
 Sejdić E, Komisar V, Steele CM, Chau T: Baseline characteristics of dualaxis swallowing accelerometry signals. Ann Biomed Eng 2010, 38(3):10481059. 10.1007/s104390099874zView ArticleGoogle Scholar
 Sejdić E, Steele CM, Chau T: Understanding statistical persistence of dualaxis swallowing accelerometry signals. Comput Biol Med 2010, 40(11):839844. 10.1016/j.compbiomed.2010.09.002View ArticleGoogle Scholar
 Damouras S, Sejdić E, Steele CM, Chau T: An online swallow detection algorithm based on the quadratic variation of dualaxis accelerometry. IEEE Trans Signal Process 2010, 58(6):33523359.MathSciNetView ArticleGoogle Scholar
 Sejdić E, Steele CM, Chau T: Scaling analysis of baseline dualaxis cervical accelerometry signals. Comput Methods Prog Biomed 2011, 103(3):113120. 10.1016/j.cmpb.2010.06.010View ArticleGoogle Scholar
 Senay S, Chaparro LF, Durak L: Reconstruction of nonuniformly sampled timelimited signals using prolate spheroidal wave functions. Signal Process 2009, 89(12):25852595. 10.1016/j.sigpro.2009.04.020View ArticleGoogle Scholar
 Mamaghanian H, Khaled N, Atienza D, Vandergheynst P: Compressed sensing for realtime energyefficient ECG compression on wireless body sensor nodes. IEEE Trans Biomed Eng 2011, 58(9):24562466.View ArticleGoogle Scholar
 Rauhut H, Schnass K, Vandergheynst P: Compressed sensing and redundant dictionaries. IEEE Trans Inf Theory 2008, 54(5):22102219.MathSciNetView ArticleGoogle Scholar
 Mallat SG, Zhang Z: Matching pursuits with timefrequency dictionaries. IEEE Trans Signal Process 1993, 41(12):33973415. 10.1109/78.258082View ArticleGoogle Scholar
 Candes EJ, Wakin MB: An introduction to compressive sampling. IEEE Signal Process Mag 2008, 25(2):2130.View ArticleGoogle Scholar
 Kovačević J, Chabira A: Life beyond bases: the advent of thes frames (part I). IEEE Signal Process Mag 2007, 24(4):86104.View ArticleGoogle Scholar
 Slepian D: Prolate spheroidal wave functions, Fourier analysis, and uncertaintyV: the discrete case. The Bell Syst Tech J 1978, 57(5):13711430.View ArticleGoogle Scholar
 Zemen T, Mecklenbräuker CF: Timevariant channel estimation using discrete prolate spheroidal sequences. IEEE Trans Signal Process 2005, 53(9):35973607.MathSciNetView ArticleGoogle Scholar
 Proakis J: Digital Communications. 4th edition. McGrawHill, New York; 2001.Google Scholar
 Zemen T, Hofstetter H, Steinbnock G: Successive Slepian subspace projection in time and frequency for timevariant channel estimation. In 14th IST Mobile and Wireless Summit. Dresden, Germany; 2005:14.Google Scholar
 Blu T, Dragotti PL, Vetterli M, Marziliano P, Coulot L: Sparse sampling of signal innovations. IEEE Signal Process Mag 2008, 25(2):3140.View ArticleGoogle Scholar
 Boucheham B, Ferdi Y, Batouche MC: Recursive versus sequential multiple error measures reduction: a curve simplification approach to ECG data compression. Comput Methods Prog Biomed 2006, 81(2):162173. 10.1016/j.cmpb.2005.11.008View ArticleGoogle Scholar
 Scholkmann F, Spichtig S, Muehlemann T, Wolf M: How to detect and reduce movement artifacts in nearinfrared imaging using moving standard deviation and spline interpolation. Physiol Meas 2010, 31(5):649662. 10.1088/09673334/31/5/004View ArticleGoogle Scholar
 Mann HB, WhitneyL DR: On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 1947, 18(1):5060. 10.1214/aoms/1177730491View ArticleGoogle Scholar
 Kruskal WH, Wallis WA: Use of ranks in onecriterion analysis of variance. J Am Stat Assoc 1952, 47(260):583621.View ArticleGoogle Scholar
 Candés E, Romberg JK, Tao T: Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 2006, 59(8):12071223. 10.1002/cpa.20124View ArticleGoogle Scholar
Copyright
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.