 Research
 Open Access
 Published:
Highaccuracy function synthesizer circuit with applications in signal processing
EURASIP Journal on Advances in Signal Processing volume 2012, Article number: 146 (2012)
Abstract
An original lowvoltage currentmode highaccuracy function synthesizer circuit will be presented, allowing to implement a multitude of continuous mathematical functions. The dynamic range is strongly extended as a result of the superiororder approximation of the implemented functions. The currentmode operation and the independence of the circuit performances on technological parameters are responsible for an additional improvement of structure accuracy. The advantages of reduced design costs per function represent an immediate consequence of the multiple functions realized by the proposed structure. The approximation error of the original function synthesizer circuit is 0.3% for an extended range of the input signal. The function synthesizer is designed for implementing in 0.18 μm CMOS technology and it is supplied at 1 V. An original application of the proposed function synthesizer circuit is represented by a new fourthorder approximation exponential function generator, having a dynamic range of approximately 33 dB, for an error smaller than 1 dB.
Introduction
Analog signal processing represents an important area of analog integrated circuits analysis and design, with a multitude of applications in many domains. Multiplier and exponential circuits are useful in telecommunication circuits[1–4], medical equipments[5, 6], hearing devices[7, 8], or disk drives[9, 10]. Squaring circuits represent the core for implementing any continuous function, using the limited Taylor series expansion. The Euclidean distance function is very important in instrumentation circuits[11, 12], communication[1, 2], neural networks[13, 14], display systems[15, 16], or classification algorithms[17], being also useful for vector quantization or nearest neighbor classification[18, 19].
The main problem in designing analog signal processing structures is how to implement with minimal effort a large number of nonlinear mathematical functions[3]. The requirements for an analog signal processing structure are mainly related to the circuit accuracy, to the possibility of achieving a multitude of circuit functions with reasonable design costs and to the controllability of the implemented function. In this context, analog processing performed in focalplane Vision SystemsonChip[20] can represent an interesting choice. Important functions from the perspective of their applications are multiplying/dividing[21–30], exponential[31–34], squaring/squarerooting[30, 35–41], or Euclidean distance[42, 43] functions.
In bipolar technology, the multiplying/dividing function can easily be obtained from the logarithmical characteristic of the bipolar transistor. Important errors still remain because of the nonzero values of the base currents and of the temperature dependence of the bipolar transistor parameters (the thermal voltage is linearly increasing with temperature and the saturation current has an exponential dependence on temperature). In order to achieve a lowpower operation of complementary metal oxide semiconductor (CMOS) designs, the subthreshold biasing of metal oxide semiconductor (MOS) transistors is an interesting choice. Based on the logarithmical law of a MOS transistor in weak inversion, the implementation of a CMOS Multiplier/Divider circuit becomes very simple (even with respect to the bipolar version). In consequence, the result will be smaller silicon area consumption, the circuit being also compatible with lowpower very largescale integration (VLSI) designs. For obtaining an important increasing of the circuit frequency response, the multiplying/dividing function can be achieved by employing the square law model of MOS transistors biased in saturation.
The exponential function is available in bipolar technology using the exponential characteristic of the bipolar transistor. In CMOS technology, the exponential law can directly be implemented exploiting the weak inversion operation of the MOS transistor. In order to obtain the exponential function using the squaring characteristic of the MOS transistor in saturation (for improving the circuit frequency response), the classical method is to approximate the exponential function with its n thorder expansion (the polynomial series). The approximation error will be proportional with the number of terms neglected in the expansion.
There are many possibilities of implementing squaring and squarerooting functions using the quadratic characteristic of the MOS transistor biased in saturation. The main goals of this class of circuits are the siliconoccupied area, the independence of the output current on the technological parameters and on temperature and the small sensitivity to the multitude of secondorder effects.
The classical approach in analog signal processing circuits is to implement, for each circuit function, a class of computational structures. The proposed method for obtaining a multitude of continuous mathematical functions is to design a complex computational structure, named function synthesizer circuit that is able to generate these functions approximating them using an original superiororder approximation function. The accuracy of computation is correlated with the order of approximation. In conclusion, a tradeoff between the complexity of the structure and its intrinsic accuracy must be made. The advantages of the proposed method are mainly related to the possibility of strongly reduce the power consumption and circuit complexity per implemented function.
It exists in literature a relatively small number of function synthesizer circuits implemented in CMOS technology[4, 33, 44–46], these applications being dedicated to the realization of a limited number of mathematical functions. In[44], the approximation of the implemented function can be obtained by adding the weighted output currents of a number of basic building blocks, built around a basic current squarer, and a constant current, the circuit presenting the disadvantage of a relatively large complexity. The circuit proposed in[45] is based on approximating the required function using the first three terms of its Taylor series expansion. The approximations can be implemented by adding the output currents of a weighted current square, a weighted current amplifier (or attenuator), and a constant current. The errors are mainly caused by the small value (two) of the approximation order and, in consequence, they are relatively large. Additionally, from the same reason, the range of the input signal is strongly restricted. A structure for synthesis of analog exponential functions, based on approximating the exponential function using rational functions, is proposed in[46]. The circuit presents the important limitations of realizing only the exponential function and of an implementation in bipolar technology.
The article is multidisciplinary, starting from a rigorous mathematical analysis and continuing with original implementations of the proposed electronic computational circuits. A new implementation of a currentmode function synthesizer circuit with an extended capability of generating continuous mathematical functions will be presented. The proposed structure is based on a fourthorder original approximation function, having the important advantages of an improved accuracy and of reconfiguration capability.
Main text
Fundamental methodology
In order to implement an improved accuracy analog function synthesizer circuit, the proposed method is to use a general continuous approximation function, g(x), having a Taylor series that can be made to fourthorder match a multitude of continuous mathematical functions, f(x).
a_{ O }…a_{4} represent constant coefficients, having values imposed by the necessity that the Taylor series of g(x) function to be identical (in a fourthorder approximation) with the Taylor series of f(x) function, that can be expressed by the following polynomial relation:
m ÷ t represents constant coefficients of the expansion, depending on the expression of f(x) function that must be implemented.
The motivation for choosing this particular g(x) approximation function is correlated with the possibilities of its facile implementation in CMOS technology (the multiplying/dividing function has a relatively simple realization). In comparison with this original approximation function, the Pade approximation[24] (having also good accuracy) presents a much more complicated implementation in CMOS technology, requiring squaring and superiororder computational circuits that strongly increase the overall complexity of the function synthesizer. The requirements for an extremely accuracy of the function synthesizer circuit impose a relatively high order of approximation for g(x) function. The increasing of the order of approximation strongly increases the complexity of the designed circuit, being necessary to realize a tradeoff between the circuit complexity and its overall accuracy. From this point of view, an optimal choice that allows to obtain a very good accuracy and a relative large dynamic range of the function synthesizer using a reasonable circuit complexity is based on a fourthorder approximation.
The fourthorder identity between the Taylor series of f(x) and g(x) functions is equivalent with the identity between the first five terms from the Taylor series of the previous functions, being evident the reason of choosing five coefficients a_{ O }…a_{4} for defining g(x) function. It results
The approximation error will have the following general expression:
In order to further reduce the approximation error of the synthesizer circuit, it is possible to increase the order of approximation. For example, a possible fifthorder approximation function that requires a reasonable complexity of CMOS implementation can be generally expressed as follows:
b_{ O }…b_{4} represent constant coefficients, having values imposed by the necessity that the Taylor series of g’(x) function to be identical (in a fifthorder approximation) with the Taylor series (2) of f(x) function. The additional complexity of the circuit that implements g’(x) function comparing with the computation structure required by g’(x) is represented by a currentmode squaring circuit (for obtaining the b_{3}x^{2} term).
Currentmode implementation of the function synthesizer circuit
Block diagram of the function synthesizer with fourthorder approximation
The block diagram of the function synthesizer, based on the original proposed approximation function (1), is presented in Figure1. The “Multiplier/Divider” circuits are currentmode structures[30, 47, 48], having the new implementation and the description of their operation presented in the following paragraph. The expressions of I_{ OUTa } and I_{ OUTb } currents are
and
The output current of the circuit having the block diagram presented in Figure1 will have the following expression:
Using the notation x = I_{ IN }/I_{ O } and relation (1), it results that I_{ OUT } current represents the fourthorder approximation of f(x) function:
The implementation of the “X^{2}” block
The functional core for designing the “Multiplier/Divider” circuit is represented by a currentmode squaring circuit, having the original implementation presented in Figure2. The aspect ratios of MOS transistors are 1μ/0.54μ for M1–M4 transistors and 0.8μ/0.54μ for M5–M7 transistors.
Noting with V_{ GS }(I) the absolute value of the gate–source voltage of a MOS transistor biased at a drain current equal with I the equation of the translinear loop can be expressed as follows:
resulting
Reducing the radicals by squaring the terms and simplifying, it results
equivalent with:
So
The expression of the output current will be
The previous relations can be used only for strong saturated devices and for not too small devices. In order to increase the accuracy of the computations, quasiidentical source–drain voltages for M1–M2 and M3–M4 transistors, respectively, must be imposed. The source–drain voltage of M3 transistor can be expressed as follows
because, considering I_{ IN } < < I_{ O }, M1 and M2 transistors are identical and biased at drain currents that differ only with a small amount. Additionally, for biasing M1 and M2 transistors at approximately equal drain–source voltages, V’ potential must be imposed, from the I_{ OUT } external terminal, to be equal with V potential. This particular biasing of M1 and M2 transistors will impose quasiidentical source–drain voltages also for M5 and M6 transistors, this fact increasing the accuracy of M5–M6 current mirror.
The M3–M7 transistors are not affected by the substrate effect, as their bulks are connected to their sources terminals. The M1 and M2 transistors have the bulk connected to the ground, so their nonzero bulksource voltage will be responsible for small errors introduced by the substrate effect. As a result, the expression of I_{ OUT } current will slightly be affected by undesired dependencies on technological parameters. The impact of these errors on the overall accuracy of the proposed function synthesizer circuit is small and they can be compensated using specific design techniques. The biasing current of the squaring circuit from Figure2 is approximately 200μA.
The implementation of the “multiplier/divider” block
The original proposed “Multiplier/Divider” circuit is presented in Figure3a, being designed using two currentmode squaring circuits, similar with the structures presented in Figure2 (M1–M4 and M3–M6, respectively). The full CMOS implementation of the “Multiplier/Divider” circuit is shown in Figure3b. The complexity of the “Multiplier/Divider” circuit is minimized by reusing M3–M4 transistors for both squaring circuits. The aspect ratios of MOS transistors are 1μ/0.54μ for M1–M6 transistors and 0.8μ/0.54μ for M7–M8 transistors. The output current has the following expression:
where two translinear loops similar with the loop analyzed for the “X^{2}” circuit implement the following expressions of I_{D 1} and I_{D 2} currents (derived from (19)):
and
resulting an output current of the circuit having the following expression:
The original proposed Multiplier/Divider circuit presents two important advantages. First, the currentmode operation increases the frequency response of the computational structure. Second, the independence of the output current expressed by (24) on technological parameters removes, in a firstorder analysis, the temperature and technologicalcaused errors, the overall accuracy of the proposed circuit being increased in this way. Additionally, the resulted concrete implementation of the function synthesizer circuit based on the block diagram proposed in Figure4 has a smaller complexity comparing with previously reported similar computational structures.
Using MOS transistors implemented in 0.18μm CMOS technology, the maximal frequency of operation of the proposed function synthesizer circuit is approximately hundreds kHz  MHz, depending on the particular model of MOS active devices. The biasing current of the “Multiplier/Divider” circuit is approximately 300μA, while the maximal biasing current of the function synthesizer circuit is smaller than 800μA.
Error mechanisms for function synthesizer circuit
Real circuits are affected by a multitude of errors[3, 4] that slightly affects their overall accuracy. The most important errors that must be taken into account for evaluating the function synthesizer accuracy are presented in the following paragraphs.
The deviation of the MOS transistor characteristic from the squarelaw, bulk effect, leakage
The saturated MOS transistor squaring characteristic is affected by the secondorder effects: mobility degradation (25), channellength modulation (26), and bulk effect (27):
The errors introduced by the bulk effect[3, 4] can be reduced by proper designs that avoid the dependence of the circuit parameters on the threshold voltage. The design of circuits for obtaining a zero bulksource voltage cancels out the errors introduced by the bulk effect. Additional errors produced by the secondorder effects are given by the dependence of K transconductance parameter on V_{ GS } voltage. Taking into account only the K(V_{ GS }) dependence, a small changing of K(V_{ GS }) voltage comparing with the analysis based on the firstorder model of MOS transistors can be determined:
For latest CMOS VLSI nanometer designs, the leakage[3, 4] becomes more important, the leakage current depending on the properties of the layout and also on the device structure. The determination of the total leakage cannot be made by adding individual leakage currents, because of a correlation that exists between leakage currents.
The subthreshold leakage is the current produced by minority electrons flowing through p substrate from source to drain, being modeled by an exponential function:
W/L is the aspect ratio of the MOS transistor, V_{ TH } is the thermal voltage, n is a parameter, and I_{ DO } current is an additional parameter. The subthresholdoff current (obtained for V_{ GS } = 0 and V_{ DS } > > V_{ T }) can be expressed as follows:
The gate leakage current can be carried by tunneling electrons or holes, the carriers leaking to source, drain, and channel. For junction leakage, low currents are carried by minority carriers drifting across the junction, by the electron–hole generation in junction or by the impact ionization at high reverse bias, the electrons being able to pass the barrier by tunneling through it—BandToBand Tunneling current[3, 4].
Mismatches in current mirrors
Current mirrors implemented using real circuits present some errors caused by the mismatches between the composing MOS transistors and also by the channellength modulation:
The method for reducing the errors introduced by the channellength modulation is to impose to the current mirror an output voltage that set V_{ DSO } ≅ V_{ DSREF }.
Different threshold voltages and K_{n}/K_{p} constants for NMOS/PMOS devices
Real circuits present differences between the threshold voltages and K_{ n }/K_{ p } constants for NMOS and PMOS transistors. In order to avoid additional inaccuracies introduced by the practical situation, translinear loops that represent the functional basis of many computational circuits must contain only NMOS or PMOS active devices or must be implemented using quasisymmetrical structures from the point of view of this complementarily (the same number of NMOS and PMOS transistors).
Variations over the process, temperature, and supply voltage
Most of MOS transistors parameters are affected by the process in which the computational circuits are implemented. On the other side, technological parameters present important temperature dependencies. From this perspective, in order to avoid important errors introduced by process and temperature, the practical realizations of analog computational circuits must be done in such a way that minimizes the number of technological parameters in the expression of the output signal. Additionally, the errors caused by the supply voltage variations can be minimized using selfbiased cascode configurations. In this context, a tradeoff between power supply rejection ratio and minimal supply voltage has to be considered.
Applications
An original exponential function generator circuit can be designed using the fourthorder approximation function (1), replacing in general relations (3)–(7) the particular values of constant coefficients of expansion (2): m = 1, n = 1, p = 1/2, q = 1/6 and r = 1/24. The g(x) function that fourthorder approximates the exponential function can be expressed as follows:
Using (8), the approximation error of the exponential function generator will have the following general expression:
A comparison between g(x) approximation function and f(x) = exp (x) is shown in Table1.
A graphical comparison between g(x) approximation function and f(x) = exp (x) is presented in Figure4.
As a result of using a fourthorder approximation function, the dynamic range of the proposed exponential function generator is approximately 33 dB, for an error smaller than 1 dB.
Simulations
The proposed function synthesizer circuit is designed for implementing in 0.18μm generic CMOS technology, the simulations being based on the squarelaw SPICE LEVEL 3 model. The parasitic and noise effects have been neglected in the performed analysis, but it could be estimated that their impact to the overall accuracy of the proposed function synthesizer circuit are relatively small comparing with other causes of errors (approximation error or secondorder effects). The overall accuracy of the proposed fourthorder function synthesizer circuit is 0.3% for an extended range of the input signal.
SPICE simulation I_{ OUT }(I_{2}) for the Multiplier/Divider circuit proposed in Figure3 is presented in Figure5. The I_{ O } and I_{1} currents have the following values: I_{ O } = 50μA and I_{1} = 20μA, while the range of I_{2} current was chosen to be between 30μA and 100μA.
A comparison between the simulated and the theoretical estimated results for the proposed current squarer is shown in Figure6.
SPICE simulation I_{ OUT }(I_{1}) for the Multiplier/Divider circuit proposed in Figure3 is presented in Figure7. The I_{ O } and I_{2} currents have the following values: I_{ O } = 10μA and I_{2} = 100μA, while the range of I_{1} current was chosen to be between 0 and 100μA.
SPICE simulation I_{ OUT }(I_{2}) for the Multiplier/Divider circuit proposed in Figure3 is presented in Figure8. The I_{ O } and I_{1} currents have the following values: I_{ O } = 50μA and I_{1} = 20μA, while the range of I_{2} current was chosen to be between 30μA and 100μA.
A comparison between the simulated and the theoretical estimated results for the proposed current Multiplier/Divider circuit is shown in Figure9. The values of I_{ O } and I_{1} currents are I_{ O } = 50μA and I_{1} = 20μA, while I_{2} current has values between 30μA and 100μA.
As a result of the particular architecture proposed for the realization of the function synthesizer structure, it presents a lowvoltage operation (a minimal supply voltage of IV for an implementation in the mentioned technology). This value of the minimal supply voltage was obtained using the theoretical analysis of the proposed function synthesizer circuit (V_{DD min} = 2V_{ SG } + V_{ DSsat }) and also by performing simulations based on the squarelaw SPICE LEVEL 3 model.
Methods
The necessity of implementing a multitude of continuous mathematical functions in CMOS technology has been solved by the original proposed function synthesizer circuit. A very important advantage of this computational structure is mainly related to its large capability of generating continuous mathematical functions: exponential, multiplying/dividing, or squaring/squarerooting functions. The original operating method was based on a new fourthorder approximation function, having a superiororder polynomial series that match the polynomial series of the approximated function. The currentmode operation and the independence of the circuit performances on the technological errors are responsible for an additional improvement of structure accuracy. The proposed function synthesizer circuit allows a relatively simple implementation in CMOS technology using only two currentmode Multiplier/Divider circuits.
The designed function synthesizer circuit has the advantages of increased modularity and controllability and of minimal design costs per implemented mathematical function. The function synthesizer is designed for implementing in 0.18μm CMOS technology and it is supplied at IV. SPICE simulations confirm the theoretical estimated results, showing an accuracy of 0.3% for an extended range of the input signal. This accuracy is exclusively referring to the precision of generating the previous functions, not to the additional circuits that deserve the proposed function synthesizer structure.
The speed of the original proposed function generator circuit is correlated with its overall accuracy, expecting the necessity of making a tradeoff between the previous performance parameters. Additionally, especially for extreme small values of the approximation error, the noise of the circuit can slightly degrade the circuit performances.
As an immediate application of the function synthesizer circuit, it was proposed a new exponential function generator based on a particular fourthorder approximation function. The circuit has a dynamic range of approximately 33 dB, in the conditions of limiting the error to 1 dB.
Author’s information
Cosmin Radu Popa was born in Constanta, Romania. He received the B.Eng. degree in electronic engineering and telecommunications in 1997, the M.Sc. degree in microelectronics in 1998, and the Ph.D. degree in electronic engineering and telecommunications with Summa Cum Laude distinction in 2004 from the University Politehnica of Bucharest, Romania. Currently, he is a lecturer at Faculty of Electronics, Telecommunications and Information Technology, Bucharest, Romania. In 2006, he earned “In Hoc Signo Vinces” award, Magna Cum Laude distinction from The National Council of Scientific Research and, in 2008, “In Tempore Opportuno” award from University Politehnica of Bucharest, both from excellence in research activity. From 2010, he is involved in a Postdoctoral Research Fellow with the same faculty. His main area of research is analog and mixed signal integrated circuits for lowpower lowvoltage applications and analog signal processing. Dr. Popa is author of five books (two of them published with Springer) covering the domains of analog signal processing circuits and, also, of more than 150 papers published in the most important international journals and conference proceedings.
Abbreviations
 CMOS:

complementary metal oxide semiconductor
 MOS:

metal oxide semiconductor
 VLSI:

very largescale integration.
References
 1.
Rittenhouse G, Goyal S, Neilson DT, Samuel S: Sustainable telecommunications. Technical Symposium at ITU Telecom World, Geneva, Switzerland; 2011:1923.
 2.
Altiparmak F, Dengiz B, Smith AAE: General neural network model for estimating telecommunications network reliability. IEEE Trans. Reliab. 2009, 58(1):29.
 3.
Popa C: SuperiorOrder CurvatureCorrection Techniques for Voltage References. Springer, New York; 2009.
 4.
Popa C: Synthesis of Computational Structures for Analog Signal Processing. Springer, New York; 2011.
 5.
Du Preez CC, Sinha S, du Plessis M: CMOS ECG, EEG and EMG waveform biosimulator. International Semiconductor Conference 2006, 1: 2729. September 2006, Sinaia, Romania, pp. 29–38
 6.
Pini F, McCarthy K: Capacitive instrumentation amplifier for lowpower bio potential signal detection. Paper presented at Signals and Systems Conference, Cork, Ireland; 2010:5458. 23–24 June 2010
 7.
Azzolini C, Ricciardi A, Boi A: Very lowcost CMOS audio amplifier for 1V portable applications. Paper presented at 3rd International Conference on Design and Technology of Integrated Systems in Nanoscale Era, Tozeur, Tunisia; 2008:2527. pp. 1–4
 8.
C Azzolini, A Boni, A 1V CMOS audio amplifier for low cost hearing aids, in Paper presented at 15th IEEE International Conference on Electronics, Circuits and Systems, 31 August – 3: St. (Julian's, Malta; September 2008):562565.
 9.
Wei DC, Sun DQ, Abidi AA: A 300MHz fixeddelay tree searchDFE analog CMOS diskdrive read channel. IEEE J. Solid State Circuits 2001, 36(11):17951807. 10.1109/4.962303
 10.
Ndjountche T, FaLong L, Bobda C: A CMOS frontend architecture for harddisk drive readchannel equalizer. Paper presented at IEEE International Symposium on Circuits and Systems, Kobe, Japan; 2005:21842187. vol. 3, 23–26 May
 11.
HwangCherng C, JiaYu W: High CMRR instrumentation amplifier for biomedical applications. Paper presented at 9th International Symposium on Signal Processing and Its Applications, 12–15 February 2007, Sharjah, United Arab Emirates; 2007:14.
 12.
Haider MR, Islam SK, Mostafa S, Mo Z, Taeho O: Lowpower lowvoltage current readout circuit for inductively powered implant system. IEEE Trans. Biomed. Circuits Syst. 2010, 4(4):205213.
 13.
Dlugosz R, Talaska T, Pedrycz W, Wojtyna R: Realization of the conscience mechanism in CMOS implementation of winnertakesall selforganizing neural networks. IEEE Trans. Neural Netw. 2010, 21(6):961971.
 14.
Ebong IE, Mazumder P: CMOS and memristorbased neural network design for position detection. Proc. IEEE 2011, 99: 111.
 15.
MingDou K: ESDaware circuit design in CMOS integrated circuits to meet systemlevel ESD specification in microelectronic systems. Paper presented at International Conference of Electron Devices and SolidState Circuits, Tianjin, China; 2011:12. 17–18 November 2011
 16.
SeungChul L, YoungDeuk J, JongKee K, Jongdae K: A 10bit 205MS/s 1.0mm2 90nm CMOS pipeline ADC for flat panel display applications. IEEE J. Solid State Circuits 2007, 42(12):26882695.
 17.
Sudha N, Sridharan K: A highspeed VLSI design and ASIC implementation for constructing Euclidean distancebased discrete Voronoi diagram. IEEE Trans. Robot. Autom. 2004, 20(2):352358. 10.1109/TRA.2004.824638
 18.
Villmann T, Schleif FM, Hammer B: Fuzzy Labeled Soft Nearest Neighbor Classification with Relevance Learning. Paper presented at Fourth International Conference on Machine Learning and Applications, Los Angeles, USA; 2005:1115. 15–17 December 2005
 19.
Triguero I, Derrac J, Garcia S, Herrera F: A taxonomy and experimental study on prototype generation for nearest neighbor classification. IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 2012, 42(1):86100.
 20.
RodríguezVázquez A, DomínguezCastro R, JiménezGarrido F, Morillas S, GarcíaOrtiz A, Utrera C, Pardo MD, Listan J, Romay R: Cellular Nanoscale Sensory Wave Computing—A CMOS Vision System OnChip with MultiCore, Cellular SensoryProcessing FrontEnd. Edited by: Baatar C, Porod W, Roska T. Springer, New York; 2010:129146.
 21.
Sawigun C, Mahattanakul J: A 1.5 V, wideinput range, highbandwidth, CMOS fourquadrant analog multiplier. IEEE International Symposium on Circuits and Systems, Washington, USA; 2008:23182321. 18–21 May 2008
 22.
Akshatha BC, Akshintala VK: Low voltage, low power, high linearity, high speed CMOS voltage mode analog multiplier. Paper presented at 2nd International Conference on Emerging Trends in Engineering and Technology, Nagpur, India; 2009:149154. 16–18 December 2009
 23.
Mahmoud SA: Low voltage low power wide range fully differential CMOS fourquadrant analog multiplier. Paper presented at 52nd IEEE International Midwest Symposium on Circuits and Systems, Cancun, Mexico; 2009:130133. 2–5 August 2009
 24.
Naderi A, Khoei A, Hadidi K: High speed, low power fourquadrant CMOS currentmode multiplier. Paper presented at 14th IEEE International Conference on Electronics, Circuits and Systems, Marrakech, Morocco; 2007:1311. 11–14 December 2007
 25.
Gravati M, Valle M, Ferri G, Guerrini N, Reyes N: A novel currentmode very low power analog CMOS four quadrant multiplier. Paper presented at 31st European SolidState Circuits Conference, Grenoble, France; 2005:495498. 12–16 September 2005
 26.
Sawigun C, Serdijn WA: Ultralowpower, classAB. CMOS fourquadrant current multiplier. Electron. Lett. 2009, 45(10):483484.
 27.
Hidayat R, Dejhan K, Moungnoul P, Miyanaga Y: OTAbased high frequency CMOS multiplier and squaring circuit. Paper presented at International Symposium on Intelligent Signal Processing and Communications Systems, Bangkok, Thailand; 2009:14. 8–10 Ferbruary 2009
 28.
Machowski W, Kuta S, Jasielski J, Kolodziejski W: Quartersquare analog fourquadrant multiplier based on CMOS invertes and using low voltage high speed control circuits. Paper presented at 17th International Conference Mixed Design of Integrated Circuits and Systems, Wroclaw, Poland; 2010:333336. 24–26 June 2010
 29.
Ehsanpour M, Moallem P, Vafaei A: Design of a novel reversible multiplier circuit using modified full adde. Paper presented at International Conference on Computer Design and Applications, Qinhuangdao, China; 2010:V3230V3234. vol. 3, 25–27 June 2010
 30.
Naderi A, Mojarrad H, Ghasemzadeh H, Khoei A, Hadidi K: Fourquadrant CMOS analog multiplier based on new current squarer circuit with highspeed. IEEE International Conference on “Computer As A Tool, Saint Petersburg, Russia; 2009:282287. 18–23 May 2009
 31.
Kao CH, Tseng CC, Hsieh CS: Lowvoltage exponential function converter. IEE Proc. Circuits Dev. Syst. 2005, 152(5):485487. 10.1049/ipcds:20045110
 32.
Ethier S, Sawan M: Exponential Current pulse generation for efficient very highimpedance multisite stimulation. IEEE Trans. Biomed. Circuits Syst 2010, 99: 19.
 33.
Hedayati H, Bakkaloglu B: A 3 GHz wideband ∑Δ fractionalN synthesizer with voltagemode exponential CPPFD. Paper presented at IEEE Radio Frequency Integrated Circuits Symposium, Boston, USA; 2009:325328. 7–9 June 2009
 34.
MoroFrias D, SanzPascual MT, de la CruzBias CA: LinearindB Variable Gain Amplifier with PWL exponential gain control. Paper presented at IEEE International Symposium on Circuits and Systems, Paris, France; 2010:28242827. 2010
 35.
CA De La Cruz Blas, O Feely, Limit cycle behavior in a classAB secondorder square root domain filter, in Paper presented at 15th IEEE International Conference on Electronics, Circuits and Systems, 31 August – 3: St. (Julian's, Malta; September 2008):117120.
 36.
Boonchu B, Surakampontom W: A CMOS currentmode squarer/rectifier circuit. Paper presented at International Symposium on Circuits and Systems, Bangkok, Thailand; 2003:I405I408. vol. 1, 25–28 May 2003
 37.
CA De La Blas, A Lopez, A novel two quadrant MOS translinear Squarerdivider cell, in Paper presented at 15th IEEE International Conference on Electronics, Circuits and Systems, 31 August – 3 Sptember: St. (Julian's, Malta; 2008):58.
 38.
De La CruzBlas CA, LopezMartin AJ, Carlosena A: 1.5V squareroot domain secondorder filter with onchip tuning. IEEE Trans. Circuits Syst. I: Regular Papers 2005, 52(10):19962006.
 39.
Raikos G, Vlassis S: Lowvoltage CMOS voltage squarer. Paper presented at 16th IEEE International Conference on Electronics, Circuits, and Systems, Yasmine Hammamet, Tunisia; 2009:159162. 13–16 December 2009
 40.
Garofalo V, Coppola M, De Caro D, Napoli E, Petra N, Strollo AGM: A novel truncated squarer with linear compensation function. Paper presented at IEEE International Symposium on Circuits and Systems, Paris, France; 2010:41574160. 30 May – 2 June 2010
 41.
Kircay A, Keserlioglu MS: Novel currentmode secondorder squarerootdomain highpass and allpass filter. Paper presented at International Conference on Electrical and Electronics Engineering, Bursa, Turkey; 2009:242246. 5–8 November 2009
 42.
Popa C: A New FGMOST Euclidean Distance Computational Circuits Based on Algebraic Mean of the Input Potentials. Springer, Berlin; 2009:459466. Lecture Notes in Computer Science
 43.
HyoJin A, ChangSeok C, Hanho L: Highspeed lowcomplexity Folded DegreeComputationless Modified Euclidean algorithm architecture for RS decoders. Paper presented at 12th International Symposium on Integrated Circuits, Singapore, Singapore; 2009:582585. 14–16 December 2009
 44.
Abuelma’atti MT, AlYahia NM: An improved universal CMOS currentmode analog function synthesizer. Paper presented at International Symposium on Integrated Circuits, Singapore; 2007:580583. 26–30 September 2007
 45.
Abuelma’atti MT: Universal CMOS currentmode analog function synthesizer. IEEE Trans. Circuits Syst. I: Fund. Theory Appl 2002, 49(10):14681474. 10.1109/TCSI.2002.803356
 46.
Abuelma’atti MT: A translinear currentmode programmable analog exponential function synthesizer. Paper presented at Eleventh International Conference on Microelectronics, Kuwait; 1999:209212. 22–24 November 1999
 47.
Psychalinos C, Vlassis S: A systematic design procedure for squarerootdomain circuits based on the signal flow graph approach. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 2002, 49(12):17021712. 10.1109/TCSI.2002.805695
 48.
Baker GA, GravesMorris P: Padé Approximants (Cambridge University Press. Cambridge, MA; 1996.
Acknowledgments
The author thanks Professor Maurits Ortmanns from Institute of Microelectronics, University of Ulm for reviewing the article and for helpful discussions, the collaboration with him bringing many improvements to the article.
Author information
Affiliations
Corresponding author
Additional information
Competing interests
The author declares that they have no competing interests.
Authors’ original submitted files for images
Below are the links to the authors’ original submitted files for images.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Popa, C. Highaccuracy function synthesizer circuit with applications in signal processing. EURASIP J. Adv. Signal Process. 2012, 146 (2012). https://doi.org/10.1186/168761802012146
Received:
Accepted:
Published:
Keywords
 Signal synthesizing
 Approximation error
 Exponential function generator
 Currentmode operation
 Continuous mathematical function
 CMOS analog designs