Melin F, Zibordi G, Djavidnia S: Development and validation of a technique for merging satellite derived aerosol optical depth from SeaWiFS and MODIS. Remote Sens Environ 2007, 108: 436-450. 10.1016/j.rse.2006.11.026
Article
Google Scholar
Zubko V, Leptoukh GG: A Gopalan, Study of data-merging and interpolation methods for use in an interactive online analysis system: MODIS terra and aqua daily aerosol case. IEEE Trans Geosci Remote Sens 2010, 48(12):4219-4235. 10.1109/TGRS.2010.2050893
Article
Google Scholar
Reynolds RW, Smith TM: Improved global sea surface temperature analyses using optimum interpolation. J Climate 1994, 7: 929-948. 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
Article
Google Scholar
Guan L, Kawamura H: Merging satellite infrared and microwave SSTs: methodology and evaluation of the new SST. J Oceanogr 2004, 60: 905. 10.1007/s10872-005-5782-5
Article
Google Scholar
Sakaida F, Kawamura H, Takahashi S, Shimada T, Kawai Y, Hosoda K, Guan L: Research and development of the New Generation Sea Surface Temperature for Open Ocean (NGSST-O) product and its demonstration operation. J Oceanogr 2009, 65: 859-870. 10.1007/s10872-009-0071-3
Article
Google Scholar
Maritorena S, d'Andon OHF, Mangin A, Siegel DA: Merged satellite ocean color data products using a bio-optical model: characteristics, benefits and issues. Remote Sens Environ 2010, 114: 1791-1804. 10.1016/j.rse.2010.04.002
Article
Google Scholar
Atkinson PM, Tatnall ARL: Introduction neural networks in remote sensing. Int J Remote Sens 1997, 18(4):699-709. 10.1080/014311697218700
Article
Google Scholar
Loyola D: Applications of neural network methods to the processing of earth observation satellite data. Neural Netw 2006, 19(2):168-177. 10.1016/j.neunet.2006.01.010
Article
Google Scholar
Sellitto P, Bojkov BR, Liu X, Chance K, Del Frate F: Tropospheric ozone column retrieval from the Ozone Monitoring Instrument by means of a neural network algorithm. Atmos Meas Tech 2011, 4: 2375-2388. 10.5194/amt-4-2375-2011
Article
Google Scholar
Tapiador FJ, Kidd C, Levizzani V, Marzano FS: A neural networks-based fusion technique to estimate half-hourly rainfall estimates at 0.1 resolution from satellite passive microwave and infrared data. J Appl Meteorol 2004, 43: 576-594. 10.1175/1520-0450(2004)043<0576:ANNFTT>2.0.CO;2
Article
Google Scholar
Turlapaty AC, Anantharaj VG, Younan NH, Turk FJ: Precipitation data fusion using vector space transformation and artificial neural networks. Pattern Recognit Lett 2010, 31: 1184-1200. 10.1016/j.patrec.2009.12.033
Article
Google Scholar
Ting KM, Witten IH: Issues in stacked generalization. J Artif Intell Res 1999, 10: 271-289.
Google Scholar
Sridhar DV, Bartlett EB, Seagrave RC: An information theoretic approach for combining neural network process models. Neural Netw 1999, 12: 915-926. 10.1016/S0893-6080(99)00030-1
Article
Google Scholar
Chen FW: Neural network characterization of geophysical processes with circular dependencies. IEEE Trans Geosci Remote Sens 2007, 45(10):3037-3043. 10.1109/TGRS.2007.895409
Article
Google Scholar
Burrows J, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, DeBeek R, Hoogen R, Bramstedt K, Eichmann K, Eisinger M, Perner D: The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results. J Atmos Sci 1999, 56(2):151-175. 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
Article
Google Scholar
Bovensmann H, Burrows J, Buchwitz M, Frerick J, Noel S, Rozanov V, Chance K, Goede A: SCIAMACHY: mission objectives and measurement modes. J Atmos Sci 1999, 56: 127-150. 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
Article
Google Scholar
Levelt PF, van den Oord GHJ, Dobber MR, Mälkki A, Visser H, de Vries J, Stammes P, Lundell JOV, Saari H: The ozone monitoring instrument. IEEE Trans Geosci Remote Sens 2006, 44(5):1093-1101. 10.1109/TGRS.2006.872333
Article
Google Scholar
Munro R, Eisinger M, Anderson C, Callies J, Corpaccioli E, Lang R, Lefebvre A, Livschitz Y, Perez Albinana A: GOME-2 on METOP: from in-orbit verification to routine operations. In Proceedings of EUMETSAT Meteorological Satellite Conference 2006. Helsinki, Finland; 2006.
Google Scholar
GCOS-107 (WMO-TD No.1338): Systematic observation requirements for satellite based products for Climate, composed by World Meteorological Organization and Intergovernmental Oceanographic Commission. 2006.
Google Scholar
Miller AJ, Nagatani RM, Flynn LE, Kondragunta S, Beach E, Stolarski R, McPeters RD, Bhartia PK, DeLand MT, Jackman CH, Wuebbles DJ, Patten KO, Cebula RP: A cohesive total ozone data set from the SBUV(/2) satellite system. J Geophys Res 2002, 107(D23):4701.
Article
Google Scholar
Stolarski R, Frith SM: Search for evidence of trend slow-down in the long-term TOMS/SBUV total ozone data record: the importance of instrument drift uncertainty. Atmos Chem Phys 2006, 6: 4057-4065. 10.5194/acp-6-4057-2006
Article
Google Scholar
Loyola D, Coldewey-Egbers M, Dameris M, Garny H, Stenke A, Van Roozendael M, Lerot C, Balis D, Koukouli M: Global long-term monitoring of the ozone layer-a prerequisite for predictions. Int J Remote Sens 2009, 30(15):4295-4318. 10.1080/01431160902825016
Article
Google Scholar
McLinden C, Tegtmeier S, Fioletov V: Technical note: a SAGE-corrected SBUV zonal mean ozone data set. Atmos Chem Phys 2009, 9: 7963-7972. 10.5194/acp-9-7963-2009
Article
Google Scholar
Bodeker GE, Scott JC, Kreher K, McKenzie RL: Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978-1998. J Geophys Res 2001, 106(D19):23029-23042. 10.1029/2001JD900220
Article
Google Scholar
Bodeker GE, Shiona H, Eskes H: Indicators of Antarctic ozone depletion. Atmos Chem Phys 2005, 5: 2603-2615. 10.5194/acp-5-2603-2005
Article
Google Scholar
Kiesewetter G, Sinnhuber BM, Vountas M, Weber M, Burrows JP: A long-term stratospheric ozone data set from assimilation of satellite observations: high-latitude ozone anomalies. J Geophys Res 2010., 115(D10307):
Google Scholar
Van der A RJ, Allaart MAF, Eskes HJ: Multi sensor reanalysis of total ozone. Atmos Chem Phys 2010, 10: 11277-11294. 10.5194/acp-10-11277-2010
Article
Google Scholar
Nirala M: Multi-sensor data fusion and comparison of total ozone. Int J Remote Sens 2008, 29(15):4553-4573. 10.1080/01431160801927202
Article
Google Scholar
Van Roozendael M, Loyola D, Spurr R, Balis D, Lambert J-C, Livschitz Y, Valks P, Ruppert T, Kenter P, Fayt C, Zehner C: Ten years of GOME/ERS-2 total ozone data: the new GOME Data Processor (GDP) Version 4: I-algorithm description. J Geophys Res 2006., 111(D14311): 10.1029/2005JD006375
Google Scholar
Lerot C, Van Roozendael M, van Geffen J, Gent J van, Fayt C, Spurr R, Lichtenberg G, von Bargen A: Six years of total ozone column measurements from SCIAMACHY nadir observations. Atmos Meas Tech 2009, 2: 87-98. 10.5194/amt-2-87-2009
Article
Google Scholar
Loyola D, Koukouli M, Valks P, Balis D, Hao N, Van Roozendael M, Spurr R, Zimmer W, Kiemle S, Lerot C, Lambert JC: The GOME-2 total column ozone product: retrieval algorithm and ground-based validation. J Geophys Res 2011., 116(D07302): 10.1029/2010JD014675
Google Scholar
Balis D, Lambert JC, van Roozendael M, Spurr R, Loyola D, Livschitz Y, Valks P, Amiridis V, Gerard P, Granville J, Zehner C: Ten years of GOME/ERS-2 total ozone data: the new GOME Data Processor (GDP) Version 4: II-ground-based validation and comparisons with TOMS V7/V8. J Geophys Res 2007., 112(D07307): 10.1029/2005JD006376
Google Scholar
Schuessler O, Loyola D: Parallel training of artificial neural networks using multithreaded and multicore CPUs. In Adaptive and Natural Computing Algorithms. Edited by: A Dobnikar, U Lotric, B Šter. Lecture Notes in Computer Science, 6593 (Springer Berlin, 2011); 70-79. 10.1007/978-3-642-20282-7_8