Z Wang, AC Bovik, Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Proc. Mag.26(1), 98–117 (2009).
Article
Google Scholar
G Ungerboeck, Theory on the speed of convergence in adaptive equalizers for digital communication. IBM J. Res. Develop. 16(6), 546–555 (1972).
Article
MATH
Google Scholar
B Widrow, ME Hoff Jr, Adaptive switching circuits. IRE WESCON Conv. Rec.4:, 96–104 (1960).
Google Scholar
JE Mazo, On the independence theory of equalizer convergence. Bell Syst. Tech. Journal. 58:, 963–993 (1979).
Article
MathSciNet
MATH
Google Scholar
E Hänsler, G Schmidt, Acoustic Echo and Noise Control (Wiley, Hoboken, NJ, USA, 2004).
Book
Google Scholar
R Nitzberg, Application of the normalized LMS algorithm to MSLC. IEEE Trans. Aerosp. Electron. Syst. 21(1), 79–91 (1985).
Article
Google Scholar
PL Feintuch, An adaptive recursiv LMS filter. Proc. IEEE. 64(11), 1622–1624 (1976).
Article
Google Scholar
RCJ Johnson, MG Larimore, Comments on and additions to an adaptive recursive LMS filter. Proc. IEEE. 65(9), 1401–1402 (1977).
Article
Google Scholar
B Widrow, JM McCool, Comments on an adaptive recursive LMS filter. Proc. IEEE. 65(9), 1402–1404 (1977).
Article
Google Scholar
CJ Johnson, Inf. Theory, IEEE Transac. 25(6), 745–749 (1979). doi:10.1109/TIT.1979.1056097.
JJ Shynk, Adaptive IIR filtering. IEEE ASSP Mag. 6(2), 4–21 (1989). doi:10.1109/53.29644.
Article
Google Scholar
P Kabal, The stability of adaptive minimum mean square error equalizers using delayed adjustment. IEEE Trans. Commun. 31(3), 430–432 (1983).
Article
MATH
Google Scholar
G Long, F Ling, JG Proakis, The LMS algorithm with delayed coefficient adaptation. IEEE Trans. Acoust. Speech Signal Process. 37(9), 1397–1405 (1989).
Article
MATH
Google Scholar
M Rupp, R Frenzel, Analysis of LMS and NLMS algorithms with delayed coefficient update under the presence of spherically invariant processes. IEEE Trans. Signal Process. 42(3), 668–672 (1994). doi:10.1109/78.277860.
Article
Google Scholar
B Widrow, D Shur, S Shaffer, in Record of the Fifteenth Asilomar Conference on Circuits, Systems and Computers. On adaptive inverse control, (1981), pp. 185–189.
M Rupp, AH Sayed, Robust FxLMS algorithm with improved convergence performance. IEEE Trans. Speech and Audio Process. 6(1), 78–85 (1998). doi:10.1109/89.650314.
Article
Google Scholar
K Tammi, Active control of rotor vibrations by two feedforward control algorithms. J. Dyn. Syst. Meas. Control. 131:, 1–10 (2009).
Article
Google Scholar
AJ Hillis, Multi-input multi-output control of an automotive active engine mounting system. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 225:, 1492–1504 (2011).
Article
Google Scholar
F Hausberg, S Vollmann, P Pfeffer, S Hecker, M Plöchl, T Kolkhorst, in 42nd International Congress and Exposition on Noise Control Engineering (Internoise 2013). Improving the convergence behavior of active engine mounts in vehicles with cylinder-on-demand engines (Innsbruck, Austria, 2013).
F Hausberg, C Scheiblegger, P Pfeffer, M Plöchl, S Hecker, M Rupp, Experimental and analytical study of secondary path variations in active engine mounts. J Sound Vib. 340:, 22–38 (2015).
Article
Google Scholar
M Rupp, F Hausberg, in Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European. LMS algorithmic variants in active noise and vibration control, (2014), pp. 691–695.
NJ Bershad, Analysis of the normalized LMS algorithm with Gaussian inputs. IEEE Trans. Acoust. Speech Signal Process. 34(4), 793–806 (1986).
Article
Google Scholar
M Tarrab, A Feuer, Convergence and performance analysis of the normalized LMS algorithm with uncorrelated Gaussian data. IEEE Trans. Inform. Theory. 34(4), 680–691 (1988).
Article
MathSciNet
MATH
Google Scholar
M Rupp, The behavior of LMS and NLMS algorithms in the presence of spherically invariant processes. IEEE Trans. Signal Process. 41(3), 1149–1160 (1993). doi:10.1109/78.205720.
Article
MATH
Google Scholar
AH Sayed, Fundamentals of Adaptive Filtering (Wiley, Hoboken, NJ, USA, 2003).
Google Scholar
M Rupp, Asymptotic equivalent analysis of the LMS algorithm under linearly filtered processes. EURASIP J. Adv Signal Process (2015).
HK Khalil, Nonlinear Systems (Mac Millan, US, 1992).
MATH
Google Scholar
M Vidyasagar, Nonlinear Systems Analysis (Prentice Hall, second edition, New Jersey, 1993).
MATH
Google Scholar
B Hassibi, AH Sayed, T Kailath, in Proc. Conference on Decision and Control, 1. LMS is H
∞
optimal (San Antonio, TX, 1993), pp. 74–79.
AH Sayed, M Rupp, in Proc. SPIE Conf. Adv. Signal Process, 2563. A time-domain feedback analysis of adaptive gradient algorithms via the small gain theorem (San Diego, CA, USA, 1995), pp. 458–469. doi:10.1117/12.211422.
M Rupp, AH Sayed, A time-domain feedback analysis of filtered-error adaptive gradient algorithms. IEEE Trans. Signal Process. 44(6), 1428–1439 (1996). doi:10.1109/78.506609.
Article
Google Scholar
AH Sayed, M Rupp, Error-energy bounds for adaptive gradient algorithms. IEEE Trans. Signal Process. 44(8), 1982–1989 (1996). doi:10.1109/78.533719.
Article
Google Scholar
AH Sayed, M Rupp, in The Digital Signal Processing Handbook. Robustness issues in adaptive filtering (CRC PressBoca Raton, FL, USA, 1998). Chap. 20.
Google Scholar
B Hassibi, T Kailath, in Decision and Control, 1994., Proceedings of the 33rd IEEE Conference On, 4. H
∞
bounds for the recursive-least-squares algorithm, (1994), pp. 3927–39284. doi:10.1109/CDC.1994.411555.
M Rupp, AH Sayed, Robustness of Gauss-Newton recursive methods: a deterministic feedback analysis. Signal Process. 50:, 165–187 (1996). doi:10.1016/0165-1684(96)00022-9.
Article
MATH
Google Scholar
B Hassibi, T Kailath, h
∞
bounds for LS estimators. IEEE Trans. Autom. Control. 46:, 309–414 (2001).
Article
MATH
Google Scholar
M Rupp, AH Sayed, Supervised learning of perceptron and output feedback dynamic networks: A feedback analysis via the small gain theorem. IEEE Trans. Neural Netw. 8(3), 612–622 (1997). doi:10.1109/72.572100.
Article
Google Scholar
K Ozeki, T Umeda, An adaptive filtering algorithm using orthogonal projection to an affine subspace and its properties. Electron. Commun. Japan. 67-A(5), 19–27 (1984).
Article
MathSciNet
Google Scholar
SL Gay, in Third International Workshop on Acoustic Echo Control. A fast converging, low complexity adaptive filtering algorithm (Plestin les Greves, France, 1993).
SL Gay, S Tavathia, in Proc. Intl. Conf on Acoustics, Speech and Signal Proc.The fast affine projection algorithm (Detroit, MI, 1995).
A Mader, H Puder, G Schmidt, Step-size control for acoustic echo cancellation filters—an overview. Signal Process. 80(9), 1697–1719 (2000).
Article
MATH
Google Scholar
M Rupp, Pseudo affine projection algorithms revisited: robustness and stability analysis. IEEE Trans. Signal Process. 59(5), 2017–2023 (2011). doi:10.1109/TSP.2011.2113346.
Article
MathSciNet
Google Scholar
RW Lucky, Automatic equalization for digital communication. Bell System Technical J. 44:, 547–588 (1965).
Article
MathSciNet
Google Scholar
J Proakis, Digital Communications (McGraw-Hill, New York, 2000).
Google Scholar
M Rupp, Convergence properties of adaptive equalizer algorithms. IEEE Trans. Signal Process. 59(6), 2562–2574 (2011). doi:10.1109/TSP.2011.2121905.
Article
MathSciNet
Google Scholar
M Rupp, Robust design of adaptive equalizers. IEEE Trans. Signal Process. 60(4), 1612–1626 (2012). doi:10.1109/TSP.2011.2180717.
Article
MathSciNet
Google Scholar
J Benesty, T Gänsler, Y Huang, M Rupp, in Audio Signal Processing for Next-Generation Multimedia Communication Systems, ed. by Y Huang, J Benesty. Adaptive Algorithms for Mimo Acoustic Echo Cancellation (Springer, 2004), pp. 119–147. ISBN: 978-1-4020-7768-5.
L Tong, G Xu, T Kailath, in Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers. A new approach to blind identification and equalization of multipath channels, (1991), pp. 856–8602. doi:10.1109/ACSSC.1991.186568.
L Tong, S Perreau, Multichannel blind identification: from subspace to maximum likelihood methods. Proc. IEEE. 86(10), 1951–1968 (1998). doi:10.1109/5.720247.
Article
Google Scholar
Y Huang, J Benesty, Adaptive multi-channel least mean square and Newton algorithms for blind channel identification. Signal Process. 82:, 1127–1138 (2002).
Article
MATH
Google Scholar
M Rupp, AH Sayed, On the convergence of blind adaptive equalizers for constant modulus signals. IEEE Trans. Commun. 48(5), 795–803 (2000). doi:10.1109/26.843192.
Article
Google Scholar
R Dallinger, M Rupp, in Record 43rd ACSSC. A strict stability limit for adaptive gradient type algorithms (Pacific Grove, CA, USA, 2009), pp. 1370–1374. doi:10.1109/ACSSC.2009.5469884.
DL Duttweiler, Proportionate normalized least mean square adaptation in echo cancellers. IEEE Trans. Speech Audio Process. 8(5), 508–518 (2000).
Article
Google Scholar
S Makino, Y Kaneda, N Koizumi, Exponentially weighted step-size NLMS adaptive filter based on the statistics of a room impulse response. IEEE Trans. Speech and Audio Process. 1(1), 101–108 (1993). doi:10.1109/89.221372.
Article
Google Scholar
J Benesty, SL Gay, in Proc. IEEE ICASSP. An improved PNLMS algorithm, (2002), pp. 1881–1884.
M Rupp, J Cezanne, Robustness conditions of the LMS algorithm with time-variant matrix step-size. Signal Process. 80(9), 1787–1794 (2000). doi:10.1016/S0165-1684(00)00088-8.
Article
MATH
Google Scholar
R Dallinger, M Rupp, in Proc. of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP’13). On the robustness of LMS algorithms with time-variant diagonal matrix step-size, (2013). doi:10.1109/ICASSP.2013.6638754.
J Arenas-García, AR Figueiras-Vidal, AH Sayed, Mean-square performance of a convex combination of two adaptive filters. IEEE Trans. Signal Process. 54(3), 1078–1090 (2006). doi:10.1109/TSP.2005.863126.
Article
Google Scholar
RT Flanagan, J-J Werner, Cascade echo canceler arrangement. U.S. Patent 6,009,083 (1999).
DY Huang, X Su, A Nallanathan, in Proc. IEEE ICASSP 2005, 3. Characterization of a cascade LMS predictor (Singapore, Singapore, 2005), pp. 173–176. doi:10.1109/ICASSP.2005.1415674.
SC Cripps, Advanced Techniques in RF Power Amplifier Design (Artech House, Inc., Boston (MA), USA, 2002).
Google Scholar
E Aschbacher, M Rupp, in Proc. IEEE SSP 2005. Robustness analysis of a gradient identification method for a nonlinear Wiener system (Bordeaux, France, 2005), pp. 103–108. doi:10.1109/SSP.2005.1628573.
R Dallinger, M Rupp, in Proc. IEEE ICASSP 2010. Stability analysis of an adaptive Wiener structure (Dallas, TX, USA, 2010), pp. 3718–3721. doi:10.1109/ICASSP.2010.5495866.
R Dallinger, M Rupp, in Proc. of EUSIPCO Conference. Stability of adaptive filters with linearly interfering update errors, (2015).
M Rupp, S Schwarz, in 40th International Conference on Acoustics, Speech, and Signal Processing (ICASSP’15). A tensor LMS algorithm, (2015), pp. 3347–3351. doi:10.1109/ICASSP.2015.7178591.
M Rupp, S Schwarz, in Proc. of EUSIPCO Conference. Gradient-based approaches to learn tensor products, (2015).
DE Rumelhart, GE Hinton, RJ Williams, Learning representations by back-propagating errors. Nature. 323:, 533–536 (1986). doi:10.1038/323533a0.
Article
Google Scholar
RP Lippmann, An introduction to computing with neural nets. IEEE Trans. Acoust. Speech Signal Process. 4(2), 4–22 (1987). doi:10.1109/MASSP.1987.1165576.
Google Scholar
R Rojas, Neural Networks (Springer, Berlin, Germany, 1996).
Book
MATH
Google Scholar
B Hassibi, AH Sayed, T Kailath, in Theoretical Advances in Neural Computation and Learning, ed. by V Roychowdhury, K Siu, and A Orlitsky. LMS and backpropagation are minimax filters (Kluwer Academic PublishersNorwell, MA, USA, 1994), pp. 425–447. Chap. 12.
Chapter
Google Scholar
SC Douglas, W Pan, Exact expectation analysis of the LMS adaptive filter. IEEE Trans. Signal Process. 43(12), 2863–2871 (1995). doi:10.1109/78.476430.
Article
Google Scholar
H-J Butterweck, in International Conference on Acoustics, Speech, and Signal Processing (ICASSP-95), 2. A steady-state analysis of the LMS adaptive algorithm without use of the independence assumption, (1995), pp. 1404–1407. doi:10.1109/ICASSP.1995.480504.
VH Nascimento, AH Sayed, in Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on, vol. 2. Are ensemble-average learning curves reliable in evaluating the performance of adaptive filters? (1998), pp. 1171–1175. doi:10.1109/ACSSC.1998.751511.
DN Godard, Self-recovering equalization and carrier tracking in twodimensional data communication systems. IEEE Trans. Commun. 28(11), 1867–1875 (1980). doi:10.1109/TCOM.1980.1094608.
Article
Google Scholar
E Walach, B Widrow, The least mean fourth (LMF) adaptive algorithm and its family. IEEE Trans. Inf. Theory. 30(2), 275–283 (1984). doi:10.1109/TIT.1984.1056886.
Article
Google Scholar
O Dabeer, E Masry, Convergence analysis of the constant modulus algorithm. IEEE Trans. Inf. Theory. 49(6), 1447–1464 (2003). doi:10.1109/TIT.2003.811903.
Article
MathSciNet
MATH
Google Scholar
VH Nascimento, JCM Bermudez, Probability of divergence for the least-mean fourth algorithm. IEEE Trans. Signal Process. 54(4), 1376–1385 (2006). doi:10.1109/TSP.2006.870546.
Article
Google Scholar
PI Hubscher, JCM Bermudez, VH Nascimento, A mean-square stability analysis of the least mean fourth adaptive algorithm. IEEE Trans. Signal Process. 55(8), 4018–4028 (2007). doi:10.1109/TSP.2007.894423.
Article
MathSciNet
Google Scholar
M Moinuddin, UM Al-Saggaf, A Ahmed, Family of state space least mean power of two-based algorithms. EURASIP J Adv. Signal Process. 39: (2015). doi:10.1186/s13634-015-0219-9.
H Robbins, S Monro, A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951).
Article
MathSciNet
MATH
Google Scholar
J Kiefer, J Wolfowitz, Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23(3), 462–466 (1952).
Article
MathSciNet
MATH
Google Scholar