Z Wang, AC Bovik, Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Proc. Mag.**26**(1), 98–117 (2009).

Article
Google Scholar

G Ungerboeck, Theory on the speed of convergence in adaptive equalizers for digital communication. IBM J. Res. Develop. **16**(6), 546–555 (1972).

Article
MATH
Google Scholar

B Widrow, ME Hoff Jr, Adaptive switching circuits. IRE WESCON Conv. Rec.**4:**, 96–104 (1960).

Google Scholar

JE Mazo, On the independence theory of equalizer convergence. Bell Syst. Tech. Journal. **58:**, 963–993 (1979).

Article
MathSciNet
MATH
Google Scholar

E Hänsler, G Schmidt, *Acoustic Echo and Noise Control* (Wiley, Hoboken, NJ, USA, 2004).

Book
Google Scholar

R Nitzberg, Application of the normalized LMS algorithm to MSLC. IEEE Trans. Aerosp. Electron. Syst. **21**(1), 79–91 (1985).

Article
Google Scholar

PL Feintuch, An adaptive recursiv LMS filter. Proc. IEEE. **64**(11), 1622–1624 (1976).

Article
Google Scholar

RCJ Johnson, MG Larimore, Comments on and additions to an adaptive recursive LMS filter. Proc. IEEE. **65**(9), 1401–1402 (1977).

Article
Google Scholar

B Widrow, JM McCool, Comments on an adaptive recursive LMS filter. Proc. IEEE. **65**(9), 1402–1404 (1977).

Article
Google Scholar

CJ Johnson, Inf. Theory, IEEE Transac. **25**(6), 745–749 (1979). doi:10.1109/TIT.1979.1056097.

JJ Shynk, Adaptive IIR filtering. IEEE ASSP Mag. **6**(2), 4–21 (1989). doi:10.1109/53.29644.

Article
Google Scholar

P Kabal, The stability of adaptive minimum mean square error equalizers using delayed adjustment. IEEE Trans. Commun. **31**(3), 430–432 (1983).

Article
MATH
Google Scholar

G Long, F Ling, JG Proakis, The LMS algorithm with delayed coefficient adaptation. IEEE Trans. Acoust. Speech Signal Process. **37**(9), 1397–1405 (1989).

Article
MATH
Google Scholar

M Rupp, R Frenzel, Analysis of LMS and NLMS algorithms with delayed coefficient update under the presence of spherically invariant processes. IEEE Trans. Signal Process. **42**(3), 668–672 (1994). doi:10.1109/78.277860.

Article
Google Scholar

B Widrow, D Shur, S Shaffer, in *Record of the Fifteenth Asilomar Conference on Circuits, Systems and Computers*. On adaptive inverse control, (1981), pp. 185–189.

M Rupp, AH Sayed, Robust FxLMS algorithm with improved convergence performance. IEEE Trans. Speech and Audio Process. **6**(1), 78–85 (1998). doi:10.1109/89.650314.

Article
Google Scholar

K Tammi, Active control of rotor vibrations by two feedforward control algorithms. J. Dyn. Syst. Meas. Control. **131:**, 1–10 (2009).

Article
Google Scholar

AJ Hillis, Multi-input multi-output control of an automotive active engine mounting system. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. **225:**, 1492–1504 (2011).

Article
Google Scholar

F Hausberg, S Vollmann, P Pfeffer, S Hecker, M Plöchl, T Kolkhorst, in *42nd International Congress and Exposition on Noise Control Engineering (Internoise 2013)*. Improving the convergence behavior of active engine mounts in vehicles with cylinder-on-demand engines (Innsbruck, Austria, 2013).

F Hausberg, C Scheiblegger, P Pfeffer, M Plöchl, S Hecker, M Rupp, Experimental and analytical study of secondary path variations in active engine mounts. J Sound Vib. **340:**, 22–38 (2015).

Article
Google Scholar

M Rupp, F Hausberg, in *Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European*. LMS algorithmic variants in active noise and vibration control, (2014), pp. 691–695.

NJ Bershad, Analysis of the normalized LMS algorithm with Gaussian inputs. IEEE Trans. Acoust. Speech Signal Process. **34**(4), 793–806 (1986).

Article
Google Scholar

M Tarrab, A Feuer, Convergence and performance analysis of the normalized LMS algorithm with uncorrelated Gaussian data. IEEE Trans. Inform. Theory. **34**(4), 680–691 (1988).

Article
MathSciNet
MATH
Google Scholar

M Rupp, The behavior of LMS and NLMS algorithms in the presence of spherically invariant processes. IEEE Trans. Signal Process. **41**(3), 1149–1160 (1993). doi:10.1109/78.205720.

Article
MATH
Google Scholar

AH Sayed, *Fundamentals of Adaptive Filtering* (Wiley, Hoboken, NJ, USA, 2003).

Google Scholar

M Rupp, Asymptotic equivalent analysis of the LMS algorithm under linearly filtered processes. EURASIP J. Adv Signal Process (2015).

HK Khalil, *Nonlinear Systems* (Mac Millan, US, 1992).

MATH
Google Scholar

M Vidyasagar, *Nonlinear Systems Analysis* (Prentice Hall, second edition, New Jersey, 1993).

MATH
Google Scholar

B Hassibi, AH Sayed, T Kailath, in *Proc. Conference on Decision and Control*, 1. LMS is *H*
_{
∞
} optimal (San Antonio, TX, 1993), pp. 74–79.

AH Sayed, M Rupp, in *Proc. SPIE Conf. Adv. Signal Process*, 2563. A time-domain feedback analysis of adaptive gradient algorithms via the small gain theorem (San Diego, CA, USA, 1995), pp. 458–469. doi:10.1117/12.211422.

M Rupp, AH Sayed, A time-domain feedback analysis of filtered-error adaptive gradient algorithms. IEEE Trans. Signal Process. **44**(6), 1428–1439 (1996). doi:10.1109/78.506609.

Article
Google Scholar

AH Sayed, M Rupp, Error-energy bounds for adaptive gradient algorithms. IEEE Trans. Signal Process. **44**(8), 1982–1989 (1996). doi:10.1109/78.533719.

Article
Google Scholar

AH Sayed, M Rupp, in *The Digital Signal Processing Handbook*. Robustness issues in adaptive filtering (CRC PressBoca Raton, FL, USA, 1998). Chap. 20.

Google Scholar

B Hassibi, T Kailath, in *Decision and Control, 1994., Proceedings of the 33rd IEEE Conference On*, 4. *H*
_{
∞
} bounds for the recursive-least-squares algorithm, (1994), pp. 3927–39284. doi:10.1109/CDC.1994.411555.

M Rupp, AH Sayed, Robustness of Gauss-Newton recursive methods: a deterministic feedback analysis. Signal Process. **50:**, 165–187 (1996). doi:10.1016/0165-1684(96)00022-9.

Article
MATH
Google Scholar

B Hassibi, T Kailath, *h*
_{
∞
} bounds for LS estimators. IEEE Trans. Autom. Control. **46:**, 309–414 (2001).

Article
MATH
Google Scholar

M Rupp, AH Sayed, Supervised learning of perceptron and output feedback dynamic networks: A feedback analysis via the small gain theorem. IEEE Trans. Neural Netw. **8**(3), 612–622 (1997). doi:10.1109/72.572100.

Article
Google Scholar

K Ozeki, T Umeda, An adaptive filtering algorithm using orthogonal projection to an affine subspace and its properties. Electron. Commun. Japan. **67-A**(5), 19–27 (1984).

Article
MathSciNet
Google Scholar

SL Gay, in *Third International Workshop on Acoustic Echo Control*. A fast converging, low complexity adaptive filtering algorithm (Plestin les Greves, France, 1993).

SL Gay, S Tavathia, in *Proc. Intl. Conf on Acoustics, Speech and Signal Proc.*The fast affine projection algorithm (Detroit, MI, 1995).

A Mader, H Puder, G Schmidt, Step-size control for acoustic echo cancellation filters—an overview. Signal Process. **80**(9), 1697–1719 (2000).

Article
MATH
Google Scholar

M Rupp, Pseudo affine projection algorithms revisited: robustness and stability analysis. IEEE Trans. Signal Process. **59**(5), 2017–2023 (2011). doi:10.1109/TSP.2011.2113346.

Article
MathSciNet
Google Scholar

RW Lucky, Automatic equalization for digital communication. Bell System Technical J. **44:**, 547–588 (1965).

Article
MathSciNet
Google Scholar

J Proakis, *Digital Communications* (McGraw-Hill, New York, 2000).

Google Scholar

M Rupp, Convergence properties of adaptive equalizer algorithms. IEEE Trans. Signal Process. **59**(6), 2562–2574 (2011). doi:10.1109/TSP.2011.2121905.

Article
MathSciNet
Google Scholar

M Rupp, Robust design of adaptive equalizers. IEEE Trans. Signal Process. **60**(4), 1612–1626 (2012). doi:10.1109/TSP.2011.2180717.

Article
MathSciNet
Google Scholar

J Benesty, T Gänsler, Y Huang, M Rupp, in *Audio Signal Processing for Next-Generation Multimedia Communication Systems*, ed. by Y Huang, J Benesty. Adaptive Algorithms for Mimo Acoustic Echo Cancellation (Springer, 2004), pp. 119–147. ISBN: 978-1-4020-7768-5.

L Tong, G Xu, T Kailath, in *Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers*. A new approach to blind identification and equalization of multipath channels, (1991), pp. 856–8602. doi:10.1109/ACSSC.1991.186568.

L Tong, S Perreau, Multichannel blind identification: from subspace to maximum likelihood methods. Proc. IEEE. **86**(10), 1951–1968 (1998). doi:10.1109/5.720247.

Article
Google Scholar

Y Huang, J Benesty, Adaptive multi-channel least mean square and Newton algorithms for blind channel identification. Signal Process. **82:**, 1127–1138 (2002).

Article
MATH
Google Scholar

M Rupp, AH Sayed, On the convergence of blind adaptive equalizers for constant modulus signals. IEEE Trans. Commun. **48**(5), 795–803 (2000). doi:10.1109/26.843192.

Article
Google Scholar

R Dallinger, M Rupp, in *Record 43rd ACSSC*. A strict stability limit for adaptive gradient type algorithms (Pacific Grove, CA, USA, 2009), pp. 1370–1374. doi:10.1109/ACSSC.2009.5469884.

DL Duttweiler, Proportionate normalized least mean square adaptation in echo cancellers. IEEE Trans. Speech Audio Process. **8**(5), 508–518 (2000).

Article
Google Scholar

S Makino, Y Kaneda, N Koizumi, Exponentially weighted step-size NLMS adaptive filter based on the statistics of a room impulse response. IEEE Trans. Speech and Audio Process. **1**(1), 101–108 (1993). doi:10.1109/89.221372.

Article
Google Scholar

J Benesty, SL Gay, in *Proc. IEEE ICASSP*. An improved PNLMS algorithm, (2002), pp. 1881–1884.

M Rupp, J Cezanne, Robustness conditions of the LMS algorithm with time-variant matrix step-size. Signal Process. **80**(9), 1787–1794 (2000). doi:10.1016/S0165-1684(00)00088-8.

Article
MATH
Google Scholar

R Dallinger, M Rupp, in *Proc. of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP’13)*. On the robustness of LMS algorithms with time-variant diagonal matrix step-size, (2013). doi:10.1109/ICASSP.2013.6638754.

J Arenas-García, AR Figueiras-Vidal, AH Sayed, Mean-square performance of a convex combination of two adaptive filters. IEEE Trans. Signal Process. **54**(3), 1078–1090 (2006). doi:10.1109/TSP.2005.863126.

Article
Google Scholar

RT Flanagan, J-J Werner, Cascade echo canceler arrangement. U.S. Patent 6,009,083 (1999).

DY Huang, X Su, A Nallanathan, in *Proc. IEEE ICASSP 2005*, 3. Characterization of a cascade LMS predictor (Singapore, Singapore, 2005), pp. 173–176. doi:10.1109/ICASSP.2005.1415674.

SC Cripps, *Advanced Techniques in RF Power Amplifier Design* (Artech House, Inc., Boston (MA), USA, 2002).

Google Scholar

E Aschbacher, M Rupp, in *Proc. IEEE SSP 2005*. Robustness analysis of a gradient identification method for a nonlinear Wiener system (Bordeaux, France, 2005), pp. 103–108. doi:10.1109/SSP.2005.1628573.

R Dallinger, M Rupp, in *Proc. IEEE ICASSP 2010*. Stability analysis of an adaptive Wiener structure (Dallas, TX, USA, 2010), pp. 3718–3721. doi:10.1109/ICASSP.2010.5495866.

R Dallinger, M Rupp, in *Proc. of EUSIPCO Conference*. Stability of adaptive filters with linearly interfering update errors, (2015).

M Rupp, S Schwarz, in *40th International Conference on Acoustics, Speech, and Signal Processing (ICASSP’15)*. A tensor LMS algorithm, (2015), pp. 3347–3351. doi:10.1109/ICASSP.2015.7178591.

M Rupp, S Schwarz, in *Proc. of EUSIPCO Conference*. Gradient-based approaches to learn tensor products, (2015).

DE Rumelhart, GE Hinton, RJ Williams, Learning representations by back-propagating errors. Nature. **323:**, 533–536 (1986). doi:10.1038/323533a0.

Article
Google Scholar

RP Lippmann, An introduction to computing with neural nets. IEEE Trans. Acoust. Speech Signal Process. **4**(2), 4–22 (1987). doi:10.1109/MASSP.1987.1165576.

Google Scholar

R Rojas, *Neural Networks* (Springer, Berlin, Germany, 1996).

Book
MATH
Google Scholar

B Hassibi, AH Sayed, T Kailath, in *Theoretical Advances in Neural Computation and Learning*, ed. by V Roychowdhury, K Siu, and A Orlitsky. LMS and backpropagation are minimax filters (Kluwer Academic PublishersNorwell, MA, USA, 1994), pp. 425–447. Chap. 12.

Chapter
Google Scholar

SC Douglas, W Pan, Exact expectation analysis of the LMS adaptive filter. IEEE Trans. Signal Process. **43**(12), 2863–2871 (1995). doi:10.1109/78.476430.

Article
Google Scholar

H-J Butterweck, in *International Conference on Acoustics, Speech, and Signal Processing (ICASSP-95)*, 2. A steady-state analysis of the LMS adaptive algorithm without use of the independence assumption, (1995), pp. 1404–1407. doi:10.1109/ICASSP.1995.480504.

VH Nascimento, AH Sayed, in *Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on, vol. 2*. Are ensemble-average learning curves reliable in evaluating the performance of adaptive filters? (1998), pp. 1171–1175. doi:10.1109/ACSSC.1998.751511.

DN Godard, Self-recovering equalization and carrier tracking in twodimensional data communication systems. IEEE Trans. Commun. **28**(11), 1867–1875 (1980). doi:10.1109/TCOM.1980.1094608.

Article
Google Scholar

E Walach, B Widrow, The least mean fourth (LMF) adaptive algorithm and its family. IEEE Trans. Inf. Theory. **30**(2), 275–283 (1984). doi:10.1109/TIT.1984.1056886.

Article
Google Scholar

O Dabeer, E Masry, Convergence analysis of the constant modulus algorithm. IEEE Trans. Inf. Theory. **49**(6), 1447–1464 (2003). doi:10.1109/TIT.2003.811903.

Article
MathSciNet
MATH
Google Scholar

VH Nascimento, JCM Bermudez, Probability of divergence for the least-mean fourth algorithm. IEEE Trans. Signal Process. **54**(4), 1376–1385 (2006). doi:10.1109/TSP.2006.870546.

Article
Google Scholar

PI Hubscher, JCM Bermudez, VH Nascimento, A mean-square stability analysis of the least mean fourth adaptive algorithm. IEEE Trans. Signal Process. **55**(8), 4018–4028 (2007). doi:10.1109/TSP.2007.894423.

Article
MathSciNet
Google Scholar

M Moinuddin, UM Al-Saggaf, A Ahmed, Family of state space least mean power of two-based algorithms. EURASIP J Adv. Signal Process. **39:** (2015). doi:10.1186/s13634-015-0219-9.

H Robbins, S Monro, A stochastic approximation method. Ann. Math. Stat. **22**(3), 400–407 (1951).

Article
MathSciNet
MATH
Google Scholar

J Kiefer, J Wolfowitz, Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. **23**(3), 462–466 (1952).

Article
MathSciNet
MATH
Google Scholar