JC Curlander, RN McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley-Interscience, New York, 1991).
MATH
Google Scholar
GC Walter, SG Ron, MM Ronald, Spotlight Synthetic Aperture Radar (Artech House Publishers, Norwood, 1995).
MATH
Google Scholar
G Franceschetti, R Lanari, Synthetic Aperture Radar Processing (CRC press, Boca Raton, 1999).
Google Scholar
A Marino, Synthetic Aperture Radar (Springer, Berlin, 2012).
Book
Google Scholar
M Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB Algorithms (Wiley-Interscience, New York, 1999).
MATH
Google Scholar
E Mason, IY Son, B Yazici, Passive synthetic aperture radar imaging using low-rank matrix recovery methods. IEEE J. Sel. Topic Signal Process.9(8), 1570–1582 (2015). doi:10.1109/JSTSP.2015.2465361.
Article
Google Scholar
R Baraniuk, P Steeghs, in 2007 IEEE Radar Conference. Compressive radar imaging (IEEEBoston, 2007), pp. 128–133.
Chapter
Google Scholar
L Zhang, Qiao Z-j, M Xing, Y Li, Z Bao, High-resolution isar imaging with sparse stepped-frequency waveforms. IEEE Trans. Geosci. Remote Sens.49(11), 4630–4651 (2011).
Article
Google Scholar
L Zhang, Z-J Qiao, M-D Xing, J-L Sheng, R Guo, Z Bao, High-resolution isar imaging by exploiting sparse apertures. IEEE Trans. Antennas Propag.60(2), 997–1008 (2012).
Article
MathSciNet
Google Scholar
B Sun, Y Cao, J Chen, C Li, Z Qiao, Compressive sensing imaging for general synthetic aperture radar echo model based on Maxwell’s equations. EURASIP J. Adv. Signal Process.2014(1), 153 (2014). doi:10.1186/1687-6180-2014-153.
Article
Google Scholar
G Li, Q Hou, S Xu, Z Chen, Multi-target simultaneous isar imaging based on compressed sensing. EURASIP J. Adv. Signal Process.2016(1), 27 (2016). doi:10.1186/s13634-016-0327-1.
Article
Google Scholar
Z Zhang, Y Xu, J Yang, X Li, D Zhang, A survey of sparse representation: algorithms and applications. IEEE Access. 3:, 490–530 (2015). doi:10.1109/ACCESS.2015.2430359.
Article
Google Scholar
B Chen, J Wang, H Zhao, N Zheng, JC Príncipe, Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process. Lett.22(10), 1723–1727 (2015).
Article
Google Scholar
W Ma, H Qu, G Gui, L Xu, J Zhao, B Chen, Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-gaussian environments. J. Frankl. Inst.352(7), 2708–2727 (2015).
Article
Google Scholar
J Fang, Z Xu, B Zhang, W Hong, Y Wu, Fast compressed sensing SAR imaging based on approximated observation. IEEE J. Sel. Topic Appl. Earth Obs. Remote Sens.7(1), 352–363 (2014).
Article
Google Scholar
L Zhang, J Duan, Z-J Qiao, M-D Xing, Z Bao, Phase adjustment and ISAR imaging of maneuvering targets with sparse apertures. IEEE Trans. Aerosp. Electron. Syst.50(3), 1955–1973 (2014).
Article
Google Scholar
J Zhang, Y Ban, D Zhu, G Zhang, Random filtering structure-based compressive sensing radar. EURASIP J. Adv. Signal Process.2014(1), 94 (2014). doi:10.1186/1687-6180-2014-94.
Article
Google Scholar
X Zhang, G Liao, S Zhu, D Yang, W Du, Efficient compressed sensing method for moving-target imaging by exploiting the geometry information of the defocused results. IEEE Geosci. Remote Sens. Lett.12(3), 517–521 (2015).
Article
Google Scholar
X Cong, G Gui, X Li, G Wen, X Huang, Q Wan, Object-level sar imaging method with canonical scattering characterisation and inter-subdictionary interferences mitigation. IET Radar Sonar Navig. 10(4), 784–790 (2016).
Article
Google Scholar
L Zhang, H Wang, Qiao Z-j, Resolution enhancement for isar imaging via improved statistical compressive sensing. EURASIP J. Adv. Signal Process.2016(1), 80 (2016). doi:10.1186/s13634-016-0379-2.
Article
Google Scholar
L Zhao, L Wang, G Bi, S Li, L Yang, H Zhang, Structured sparsity-driven autofocus algorithm for high-resolution radar imagery. Signal Process.125:, 376–388 (2016).
Article
Google Scholar
R Bro, Parafac. tutorial and applications. Chemometr. Intell. Lab. Syst.38(2), 149–171 (1997).
Article
Google Scholar
ND Sidiropoulos, R Bro, GB Giannakis, Parallel factor analysis in sensor array processing. IEEE Trans. Signal Process.48(8), 2377–2388 (2000).
Article
Google Scholar
A Cichocki, D Mandic, L De Lathauwer, G Zhou, Q Zhao, C Caiafa, HA Phan, Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag.32(2), 145–163 (2015).
Article
Google Scholar
L-H Lim, P Comon, Multiarray signal processing: tensor decomposition meets compressed sensing. Comptes Rendus Mecanique. 338(6), 311–320 (2010).
Article
MATH
Google Scholar
MF Duarte, YC Eldar, Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process.59(9), 4053–4085 (2011).
Article
MathSciNet
Google Scholar
ND Sidiropoulos, A Kyrillidis, Multi-way compressed sensing for sparse low-rank tensors. IEEE Signal Process. Lett.19(11), 757–760 (2012).
Article
Google Scholar
CF Caiafa, A Cichocki, Multidimensional compressed sensing and their applications. Wiley Interdiscip. Rev. Data Min. Knowl. Disc.3(6), 355–380 (2013). doi:10.1002/widm.1108.
Article
Google Scholar
S Friedland, Q Li, D Schonfeld, Compressive sensing of sparse tensors. IEEE Trans. Image Process.23(10), 4438–4447 (2014). doi:10.1109/TIP.2014.2348796.
Article
MathSciNet
Google Scholar
E Li, MJ Shafiee, F Kazemzadeh, A Wong, Sparse reconstruction of compressive sensing multi-spectral data using an inter-spectral multi-layered conditional random field model. IEEE Access. 4:, 5540–5554 (2016). doi:10.1109/ACCESS.2016.2598320.
Article
Google Scholar
M Haardt, F Roemer, G Del Galdo, Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems. IEEE Trans. Signal Process.56(7), 3198–3213 (2008).
Article
MathSciNet
Google Scholar
F Roemer, Advanced algebraic concepts for efficient multi-channel signal processing (PhD thesis, Ilmenau University of Technology, Ilmenau, 2013).
Google Scholar
TG Kolda, BW Bader, Tensor decompositions and applications. SIAM Rev.51(3), 455–500 (2009). doi:10.1137/07070111X.
Article
MathSciNet
MATH
Google Scholar
DH Vu, Advanced techniques for synthetic aperture radar image reconstruction (PhD thesis, University of Florida, Gainesville, 2012).
Google Scholar
W Xu, P Huang, Y Deng, Efficient sliding spotlight SAR raw signal simulation of extended scenes. EURASIP J. Adv. Signal Process.2011(1), 52 (2011). doi:10.1186/1687-6180-2011-52.
Article
Google Scholar
L Zhang, Li H-l, Qiao Z-j, Xing M-d, Z Bao, Integrating autofocus techniques with fast factorized back-projection for high-resolution spotlight SAR imaging. IEEE Geosci. Remote Sens. Lett.10(6), 1394–1398 (2013).
Article
Google Scholar
L Greengard, J Lee, Accelerating the nonuniform fast fourier transform. SIAM Rev.46(3), 443–454 (2004).
Article
MathSciNet
MATH
Google Scholar
JA Tropp, Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory. 50(10), 2231–2242 (2004).
Article
MathSciNet
MATH
Google Scholar
S Jokar, V Mehrmann, Sparse solutions to underdetermined Kronecker product systems. Linear Algebra Appl.431(12), 2437–2447 (2009).
Article
MathSciNet
MATH
Google Scholar
S Jokar, in 2010 44th Annual Conference on Information Sciences and Systems (CISS). Sparse recovery and kronecker products, (2010), pp. 1–4. doi:10.1109/CISS.2010.5464722.
YC Eldar, M Mishali, in 2009 16th International Conference on Digital Signal Processing. Block sparsity and sampling over a union of subspaces, (2009), pp. 1–8. doi:10.1109/ICDSP.2009.5201211.
YC Eldar, P Kuppinger, H Bolcskei, Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process.58(6), 3042–3054 (2010).
Article
MathSciNet
Google Scholar
RG Baraniuk, V Cevher, MF Duarte, C Hegde, Model-based compressive sensing. IEEE Trans. Inf. Theory. 56(4), 1982–2001 (2010).
Article
MathSciNet
Google Scholar
YC Eldar, M Mishali, Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inf. Theory. 55(11), 5302–5316 (2009). doi:10.1109/TIT.2009.2030471.
Article
MathSciNet
Google Scholar
MF Duarte, RG Baraniuk, Kronecker compressive sensing. IEEE Trans. Image Process.21(2), 494–504 (2012).
Article
MathSciNet
Google Scholar
Y-F Gao, L Zou, Q Wan, A two-dimensional arrival angles estimation for l-shaped array based on tensor decomposition. AEU - Int. J. Electron. Commun.69(4), 736–744 (2015). doi:10.1016/j.aeue.2015.01.001.
Article
Google Scholar
DL Donoho, et al., High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Chall. Lect., 1–32 (2000).
IV Oseledets, EE Tyrtyshnikov, Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput.31(5), 3744–3759 (2009).
Article
MathSciNet
MATH
Google Scholar
B Sun, H Gu, M Hu, Z Qiao, in SPIE Sensing Technology+ Applications. Compressive sensing for a general sar imaging model based on maxwell’s equations (International Society for Optics and PhotonicsSan Diego, 2015), pp. 948402–948402.
Google Scholar
Y Li, Y Wang, Sparse SM-NLMS algorithm based on correntropy criterion. Electron. Lett.52(17), 1461–1463 (2016).
Article
Google Scholar
Y Li, C Zhang, S Wang, Low-complexity non-uniform penalized affine projection algorithm for sparse system identification. Circ. Syst. Signal Process.35(5), 1611–1624 (2016).
Article
MATH
Google Scholar
L De Lathauwer, B De Moor, J Vandewalle, On the best rank-1 and rank-(r 1, r 2,…, rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl.21(4), 1324–1342 (2000).
Article
MathSciNet
MATH
Google Scholar
R Rubinstein, M Zibulevsky, M Elad, Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical Report 8, Computer Science Department, Technion - Israel Institute of Technology (2008).
JA Tropp, SJ Wright, Computational methods for sparse solution of linear inverse problems. Proc. IEEE. 98(6), 948–958 (2010).
Article
Google Scholar
Y Yuan, J Sun, S Mao, PFA algorithm for airborne spotlight SAR imaging with nonideal motions. IEE Proc. Radar Sonar Navig. 149(4), 174–182 (2002).
Article
Google Scholar
BD Rigling, RL Moses, Polar format algorithm for bistatic SAR. IEEE Trans. Aerosp. Electron. Syst.40(4), 1147–1159 (2004).
Article
Google Scholar
D Needell, JA Tropp, Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal.26(3), 301–321 (2009).
Article
MathSciNet
MATH
Google Scholar