W. Li, R. Zhao, T. Xiao, X. Wang, DeepReID: deep filter pairing neural network for person re-identification. 2014 IEEE Conf. Comput. Vis. Pattern Recognit., 152–159 (2014).
H. Zhao, M. Tian, S. Sun, J. Shao, J. Yan, S. Yi, X. Wang, X. Tang, Spindle Net: person re-identification with human body region guided feature decomposition and fusion. 2017 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 907–915 (2017).
X. Zhang, H. Luo, X. Fan, W. Xiang, Y. Sun, Q. Xiao, W. Jiang, C. Zhang, J. Sun, AlignedReID: surpassing human-level performance in person identification. CoRR. abs/1711.08184: (2017). http://arxiv.org/abs/1711.08184. https://dblp.org/rec/bib/journals/corr/abs-1711-08184.
W. Li, X. Zhu, S. Gong, Harmonious attention network for person re-identification (2018).
A. Hermans, L. Beyer, B. Leibe, In defense of the triplet loss for person re-identification. CoRR. abs/1703.07737: (2017). http://arxiv.org/abs/1703.07737. https://dblp.org/rec/bib/journals/corr/HermansBL17.
K. Li, Z. Ding, K. Li, Y. Zhang, Y. Fu, Support neighbor loss for person re-identification (2018).
W. Chen, X. Chen, J. Zhang, K. Huang, Beyond triplet loss: a deep quadruplet network for person re-identification. 2017 IEEE Conf. Comput. Vis. Pattern Recognit. Cvpr, 1320–1329 (2017).
Q. Xiao, H. Luo, C. Zhang, Margin sample mining loss: a deep learning based method for person re-identification. CoRR. abs/1710.00478: (2017). http://arxiv.org/abs/1710.00478. https://dblp.org/rec/bib/journals/corr/abs-1710-00478.
T. Xiao, S. Li, B. Wang, L. Lin, X. Wang, Joint detection and identification feature learning for person search. 2017 IEEE Conf. Comput. Vis. Pattern Recognit. Cvpr, 3376–3385 (2017).
L. Zheng, H. Zhang, S. Sun, M. Chandraker, Y. Yang, Q. Tian, Person re-identification in the wild. 2017 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR). abs/1604.02531:, 3346–3355 (2016).
Google Scholar
L. Wei, S. Zhang, W. Gao, Q. Tian, Person transfer GAN to bridge domain gap for person re-identification (2017).
X. Qian, Y. Fu, W. Wang, T. Xiang, Y. Wu, Y. -G. Jiang, X. Xue, Pose-normalized image generation for person re-identification (2017). arXiv.
M. Zheng, S. Karanam, R. J. Radke, Measuring the temporal behavior of real-world person re-identification. CoRR. abs/1808.05499: (2018). http://arxiv.org/abs/1808.05499. https://dblp.org/rec/bib/journals/corr/abs-1808-05499.
L. Zheng, Y. Yang, A. G. Hauptmann, Person re-identification: past, present and future. CoRR. abs/1610.02984: (2016). http://arxiv.org/abs/1610.02984. https://dblp.org/rec/bib/journals/corr/ZhengYH16.
S. Karanam, M. Gou, Z. Wu, A. Rates-Borras, O. Camps, R. J. Radke, A systematic evaluation and benchmark for person re-identification: features, metrics, and datasets. IEEE Trans. Pattern Anal. Mach. Intell.PP:, 1–1 (2018).
Google Scholar
D. Gray, H. Tao, Viewpoint invariant pedestrian recognition with an ensemble of localized features. 5302: (2008).
D. Baltieri, R. Vezzani, R. Cucchiara, in Proceedings of the 2011 joint ACM workshop on Human gesture and behavior understanding. 3DPeS: 3D people dataset for surveillance and forensics (J-HGBU@MM 2011Scottsdale, 2011), p. 59. https://doi.org/10.1145/2072572.2072590. https://dblp.org/rec/bib/conf/mm/BaltieriVC11.
M. Hirzer, C. Beleznai, P. M. Roth, H. Bischof, Person re-identification by descriptive and discriminative classification. 6688: (2011).
L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, Q. Tian, Scalable person re-identification: a benchmark (2015).
L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, Q. Tian, MARS: A Video Benchmark for Large-Scale Person Re-Identification, vol. 9910 (Springer, 2016). https://doi.org/10.1007/978-3-319-46466-4_52.
Chapter
Google Scholar
M. Gou, S. Karanam, W. Liu, O. Camps, R. J. Radke, DukeMTMC4ReID: a large-scale multi-camera person re-identification dataset (2017).
P. Dollár, C. Wojek, B. Schiele, P. Perona, Pedestrian detection: an evaluation of the state of the art. IEEE T Pattern Anal.34(4), 743–761 (2012).
Article
Google Scholar
A. Geiger, P. Lenz, C. Stiller, R. Urtasun, Vision meets robotics: the KITTI dataset. Int J. Robotics Res.32(11), 1231–1237 (2013).
Article
Google Scholar
S. Zhang, R. Benenson, B. Schiele, CityPersons: a diverse dataset for pedestrian detection (2017).
T. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. Zitnick, P. Dollár, Microsoft COCO: common objects in context (2014).
S. Shao, Z. Zhao, B. Li, T. Xiao, G. Yu, X. Zhang, J. Sun, CrowdHuman: a benchmark for detecting human in a crowd. CoRR. abs/1805.00123: (2018). http://arxiv.org/abs/1805.00123. https://dblp.org/rec/bib/journals/corr/abs-1805-00123.
M. Braun, S. Krebs, F. Flohr, D. Gavrila, The EuroCity persons dataset: a novel benchmark for object detection (2018).
A. Awais, J. Sohail, P. Anand, R. Seungmin, Mobility aware energy efficient congestion control in mobile wireless sensor network. Int. J. Distrib. Sensor Netw.2014:, 530–416 (2014).
Google Scholar
S. Jabbar, A. A. Minhas, A. Paul, S. Rho, Multilayer cluster designing algorithm for lifetime improvement of wireless sensor networks. J. Supercomput.70:, 104–132 (2014).
Article
Google Scholar
J. Sohail, A. A. Minhas, G. Moneeb, P. Anand, R. Seungmin, J. Sohail, A. A. Minhas, G. Moneeb, P. Anand, R. Seungmin, E-MCDA: extended-multilayer cluster designing algorithm for network lifetime improvement of homogenous wireless sensor networks. Int. J. Distrib. Sensor Netw.11:, 902581 (2015).
Article
Google Scholar
M. Mueller, N. Smith, B. Ghanem, A benchmark and simulator for UAV tracking. 9905: (2016).
M. Hsieh, Y. Lin, W. H. Hsu, Drone-based object counting by spatially regularized regional proposal network, 4165–4173 (2017).
A. Robicquet, A. Sadeghian, A. Alahi, S. Savarese, Learning social etiquette: human trajectory understanding in crowded scenes. 9912: (2016).
D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, W. Zhang, Q. Huang, Q. Tian, The unmanned aerial vehicle benchmark: object detection and tracking. CoRR. abs/1804.00518: (2018). http://arxiv.org/abs/1804.00518. https://dblp.org/rec/bib/journals/corr/abs-1804-00518.
S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks (2015).
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition (2015).
R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, K. He, Detectron (2018). https://github.com/facebookresearch/detectron.
K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN. CoRR. abs/1703.06870: (2017). http://arxiv.org/abs/1703.06870. https://dblp.org/rec/bib/journals/corr/HeGDG17.
P. Zhu, L. Wen, X. Bian, H. Ling, Q. Hu, Vision meets drones: a challenge. CoRR. abs/1804.07437: (2018). http://arxiv.org/abs/1804.07437. https://dblp.org/rec/bib/journals/corr/abs-1804-07437.
W. Wan, Rethinking feature distribution for loss functions in image classification. CoRR. abs/1803.02988:, 9117–9126 (2018). https://dblp.org/rec/bib/journals/corr/abs-1803-02988.
M. Huh, P. Agrawal, A. A. Efros, What makes ImageNet good for transfer learning?. CoRR. abs/1608.08614: (2016). http://arxiv.org/abs/1608.08614. https://dblp.org/rec/bib/journals/corr/HuhAE16.
J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?. CoRR. abs/1411.1792: (2014). http://arxiv.org/abs/1411.1792. https://dblp.org/rec/bib/journals/corr/YosinskiCBL14.
S. Kornblith, J. Shlens, Q. V. Le, Do better ImageNet models transfer better?. CoRR. abs/1805.08974: (2018). http://arxiv.org/abs/1805.08974. https://dblp.org/rec/bib/journals/corr/abs-1805-08974.
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV). 115(3), 211–252 (2015).
Article
MathSciNet
Google Scholar
J. Deng, J. Guo, S. Zafeiriou, ArcFace: additive angular margin loss for deep face recognition. CoRR. abs/1801.07698: (2018). http://arxiv.org/abs/1801.07698. https://dblp.org/rec/bib/journals/corr/abs-1801-07698.
H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, W. Liu, CosFace: large margin cosine loss for deep face recognition (2018).
H. Zhu, Q. Liu, Y. Qi, X. Huang, F. Jiang, S. Zhang, Plant identification based on very deep convolutional neural networks. Multimed. Tools Appl.77:, 29779–29797 (2018).
Article
Google Scholar
M. Leclerc, R. Tharmarasa, M. C. Florea, A. -C. Boury-Brisset, T. Kirubarajan, N. Duclos-Hindie, in 2018 21st International Conference on Information Fusion (FUSION). Ship Classification Using Deep Learning Techniques for Maritime Target Tracking, (2018), pp. 737–744.
H. Yu, W. Jia, Z. Li, F. Gong, D. Yuan, H. Zhang, M. Sun, A multisource fusion framework driven by user-defined knowledge for egocentric activity recognition. EURASIP J. Adv. Signal Process. 2019:, 14 (2019).
Article
Google Scholar
W. J. Sori, J. Feng, S. Liu, Multi-path convolutional neural network for lung cancer detection. Multidim. Syst. Signal Process., 1–20 (2018).
T. -Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection. 2017 IEEE Int. Conf. Comput. Vis. (ICCV), 2999–3007 (2017).
S. Zhang, Y. Qi, F. Jiang, X. Lan, P. C. Yuen, H. Zhou, Point-to-set distance metric learning on deep representations for visual tracking. IEEE Trans. Intell. Transp. Syst.19:, 187–198 (2017).
Article
Google Scholar
C. Feichtenhofer, A. Pinz, A. Zisserman, Detect to track and track to detect (2017). arXiv.
L. Hou, W. Wan, J. -N. Hwang, R. Muhammad, M. Yang, K. Han, Human tracking over camera networks: a review. EURASIP J. Adv. Signal Process.2017:, 43 (2017).
Article
Google Scholar
X. Fan, H. Luo, X. Zhang, L. He, C. Zhang, W. Jiang, SCPNet: Spatial-channel parallelism network for joint holistic and partial person re-identification (2018).
Y. Zhai, X. Guo, Y. Lu, H. Li, In defense of the classification loss for person re-identification. CoRR. abs/1809.05864: (2018). http://arxiv.org/abs/1809.05864. https://dblp.org/rec/bib/journals/corr/abs-1809-05864.
F. Yang, K. Yan, S. Lu, H. Jia, X. Xie, W. Gao, Attention driven person re-identification (2018). arXiv.
S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift (2015).
A. Krizhevsky, I. Sutskever, E. G. Hinton, Imagenet classification with deep convolutional neural networks. Neural Inf. Process. Syst.25: (2012).
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.15(1), 1929–1958 (2014). http://dl.acm.org/citation.cfm?id=2627435.2670313.
D. P. Kingma, J. Ba, in 3rd International Conference on Learning Representations, ICLR. Adam: a method for stochastic optimization (Conference Track ProceedingsSan Diego, 2015). http://arxiv.org/abs/1412.6980. https://dblp.org/rec/bib/journals/corr/KingmaB14.