M. Marey, O. A. Dobre, Blind modulation classification algorithm for single and multiple-antenna systems over frequency-selective channels. IEEE Signal Process. Lett.21(9), 1098–1102 (2014). https://doi.org/10.1109/LSP.2014.2323241.
Article
Google Scholar
M. Marey, O. A. Dobre, Blind modulation classification for alamouti stbc system with transmission impairments. IEEE Wirel. Commun. Lett.4(5), 521–524 (2015). https://doi.org/10.1109/LWC.2015.2451174.
Article
Google Scholar
A. V. Dandawate, G. B. Giannakis, Statistical tests for presence of cyclostationarity. IEEE Trans. Signal Process. 42(9), 2355–2369 (1994). https://doi.org/10.1109/78.317857.
Article
Google Scholar
E. Karami, O. A. Dobre, Identification of sm-ofdm and al-ofdm signals based on their second-order cyclostationarity. IEEE Trans. Veh. Technol.64(3), 942–953 (2015). https://doi.org/10.1109/TVT.2014.2326107.
Article
Google Scholar
Y. A. Eldemerdash, O. A. Dobre, B. J. Liao, Blind identification of sm and alamouti stbc-ofdm signals. IEEE Trans. Wirel. Commun.14(2), 972–982 (2015). https://doi.org/10.1109/TWC.2014.2363093.
Article
Google Scholar
E. Conte, A. De Maio, Distributed target detection in compound-gaussian noise with rao and wald tests. IEEE Trans. Aerosp. Electron. Syst.39(2), 568–582 (2003). https://doi.org/10.1109/TAES.2003.1207267.
Article
Google Scholar
A. De Maio, S. Iommelli, Coincidence of the rao test, wald test, and glrt in partially homogeneous environment. IEEE Signal Process. Lett.15:, 385–388 (2008). https://doi.org/10.1109/LSP.2008.920016.
Article
Google Scholar
I. S. Reed, X. Yu, Adaptive multiple-band cfar detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process.38(10), 1760–1770 (1990). https://doi.org/10.1109/29.60107.
Article
Google Scholar
M. E. Smith, P. K. Varshney, Intelligent cfar processor based on data variability. IEEE Trans. Aerosp. Electron. Syst.36(3), 837–847 (2000). https://doi.org/10.1109/7.869503.
Article
Google Scholar
A. Ghobadzadeh, A. Pourmottaghi, M. R. Taban, in 2011, 19th Iranian Conference on Electrical Engineering, IEEE. Clutter edge detection and estimation of field parameters in radar detection, (2011), pp. 1–6.
A. Ghobadzadeh, S. Gazor, M. R. Taban, A. Tadaion, S. M. Moshtaghioun, Invariance and optimality of cfar detectors in binary composite hypothesis tests. IEEE Trans. Signal Process.62(14), 3523–3535 (2014). https://doi.org/10.1109/TSP.2014.2328327.
Article
MathSciNet
Google Scholar
F. C. Robey, D. R. Fuhrmann, E. J. Kelly, R. Nitzberg, A cfar adaptive matched filter detector. IEEE Trans. Aerosp. Electron. Syst.28(1), 208–216 (1992). https://doi.org/10.1109/7.135446.
Article
Google Scholar
K. J. Sangston, K. R. Gerlach, Coherent detection of radar targets in a non-gaussian background. IEEE Trans. Aerosp. Electron. Syst.30(2), 330–340 (1994). https://doi.org/10.1109/7.272258.
Article
Google Scholar
A. De Maio, L. Pallotta, J. Li, P. Stoica, Loading factor estimation under affine constraints on the covariance eigenvalues with application to radar target detection. IEEE Trans. Aerosp. Electron. Syst.55(3), 1269–1283 (2019). https://doi.org/10.1109/TAES.2018.2867699.
Article
Google Scholar
A. Aubry, A. De Maio, L. Pallotta, A. Farina, Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions. IEEE Trans. Signal Process.61(20), 4949–4961 (2013). https://doi.org/10.1109/TSP.2013.2273444.
Article
MathSciNet
Google Scholar
E. L. Lehmann, J. P. Romano, Testing Statistical Hypotheses (Springer-Verlag, New York, 2005).
MATH
Google Scholar
S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory (Prentice-Hall PTR, Upper Saddle River, 1998). https://books.google.com/books?id=vA9LAQAAIAAJ.
Google Scholar
O. A. Dobre, A. Abdi, Y. Bar-Ness, W. Su, Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun.1(2), 137–156 (2007). https://doi.org/10.1049/iet-com:20050176.
Article
Google Scholar
B. Tang, H. He, Q. Ding, S. Kay, A parametric classification rule based on the exponentially embedded family. IEEE Trans. Neural Netw. Learn. Syst.26(2), 367–377 (2015). https://doi.org/10.1109/TNNLS.2014.2383692.
Article
MathSciNet
Google Scholar
A. K. Nandi, E. E. Azzouz, Algorithms for automatic modulation recognition of communication signals. IEEE Trans. Commun.46(4), 431–436 (1998). https://doi.org/10.1109/26.664294.
Article
Google Scholar
A. Swami, B. M. Sadler, Hierarchical digital modulation classification using cumulants. IEEE Trans. Commun.48(3), 416–429 (2000). https://doi.org/10.1109/26.837045.
Article
Google Scholar
B. G. Mobasseri, Digital modulation classification using constellation shape. Signal Process.80(2), 251–277 (2000). https://doi.org/10.1016/S0165-1684(99)00127-9.
Article
Google Scholar
Q. Zhang, O. A. Dobre, Y. A. Eldemerdash, S. Rajan, R. Inkol, Second-order cyclostationarity of bt-scld signals: Theoretical developments and applications to signal classification and blind parameter estimation. IEEE Trans. Wirel. Commun.12(4), 1501–1511 (2013). https://doi.org/10.1109/TWC.2013.021213.111888.
Article
Google Scholar
K. Hassan, I. Dayoub, W. Hamouda, M. Berbineau, Automatic modulation recognition using wavelet transform and neural networks in wireless systems. EURASIP J. Adv. Signal Process.2010(532898), 13 (2010).
MATH
Google Scholar
M. L. D. Wong, A. K. Nandi, Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Process.84(2), 351–365 (2004). https://doi.org/10.1016/j.sigpro.2003.10.019.Special Section on Independent Component Analysis and Beyond.
Article
Google Scholar
Y. Wang, T. Zhang, J. Bai, R. Bao, in 2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Modulation recognition algorithms for communication signals based on particle swarm optimization and support vector machines, (2011), pp. 266–269. https://doi.org/10.1109/IIHMSP.2011.31.
J. A. Sills, Maximum-likelihood modulation classification for psk/qam. IEEE Mil. Commun. Conf. Proc. (Cat. No.99CH36341). 1:, 217–2201 (1999). https://doi.org/10.1109/MILCOM.1999.822675.
Google Scholar
K. Kim, A. Polydoros, in MILCOM 88, 21st Century Military Communications - What’s Possible?’. Conference Record. Military Communications Conference. Digital modulation classification: the bpsk versus qpsk case (IEEE, 1988), pp. 431–4362. https://doi.org/10.1109/MILCOM.1988.13427.
Wen Wei, J. M. Mendel, Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Trans. Commun.48(2), 189–193 (2000). https://doi.org/10.1109/26.823550.
Article
Google Scholar
A. Polydoros, K. Kim, On the detection and classification of quadrature digital modulations in broad-band noise. IEEE Trans. Commun.38:, 1199–1211 (1990). https://doi.org/10.1109/26.58753.
Article
Google Scholar
P. Panagiotou, A. Anastasopoulos, A. Polydoros, in MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155), 2. Likelihood ratio tests for modulation classification (IEEE, 2000), pp. 670–6742. https://doi.org/10.1109/MILCOM.2000.904013.
N. E. Lay, A. Polydoros, in Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers, 2. Per-survivor processing for channel acquisition, data detection and modulation classification (IEEE, 1994), pp. 1169–11732. https://doi.org/10.1109/ACSSC.1994.471643.
N. E. Lay, A. Polydoros, in Proceedings of MILCOM ’95, 1. Modulation classification of signals in unknown isi environments (IEEE, 1995), pp. 170–1741. https://doi.org/10.1109/MILCOM.1995.483293.
K. M. Chugg, C. -S. Long, A. Polydoros, in Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, 2. Combined likelihood power estimation and multiple hypothesis modulation classification (IEEE, 1995), pp. 1137–11412. https://doi.org/10.1109/ACSSC.1995.540877.
L. Hong, K. C. Ho, in MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155), 2. Bpsk and qpsk modulation classification with unknown signal level (IEEE, 2000), pp. 976–9802. https://doi.org/10.1109/MILCOM.2000.904076.
L. Hong, K. C. Ho, in MILCOM 2002. Proceedings, 1. Antenna array likelihood modulation classifier for bpsk and qpsk signals (IEEE, 2002), pp. 647–6511. https://doi.org/10.1109/MILCOM.2002.1180521.
F. Hameed, O. A. Dobre, D. C. Popescu, On the likelihood-based approach to modulation classification. IEEE Trans. Wirel. Commun.8(12), 5884–5892 (2009). https://doi.org/10.1109/TWC.2009.12.080883.
Article
Google Scholar
A. Ghobadzadeh, Optimal and suboptimal signal detection-on the relationship between estimation and detection theory. PhD thesis, Queen’s University at Kingston (2015).
E. Conte, A. De Maio, C. Galdi, Cfar detection of multidimensional signals: an invariant approach. IEEE Trans. Signal Process.51(1), 142–151 (2003). https://doi.org/10.1109/TSP.2002.806554.
Article
MathSciNet
Google Scholar
J. R. Gabriel, S. M. Kay, On the relationship between the glrt and umpi tests for the detection of signals with unknown parameters. IEEE Trans. Signal Process.53(11), 4194–4203 (2005). https://doi.org/10.1109/TSP.2005.857043.
Article
MathSciNet
Google Scholar
A. DeMaio, Generalized cfar property and ump invariance for adaptive signal detection. IEEE Trans. Signal Process.61(8), 2104–2115 (2013). https://doi.org/10.1109/TSP.2013.2245662.
Article
Google Scholar
A. A. Tadaion, M. Derakhtian, S. Gazor, M. M. Nayebi, M. R. Aref, Signal activity detection of phase-shift keying signals. IEEE Trans. Commun.54(8), 1439–1445 (2006). https://doi.org/10.1109/TCOMM.2006.878830.
Article
Google Scholar
S. M. Kay, J. R. Gabriel, Optimal invariant detection of a sinusoid with unknown parameters. IEEE Trans. Signal Process.50(1), 27–40 (2002). https://doi.org/10.1109/78.972479.
Article
MathSciNet
Google Scholar
M. Naderpour, A. Ghobadzadeh, A. Tadaion, S. Gazor, Generalized wald test for binary composite hypothesis test. IEEE Signal Process. Lett.22(12), 2239–2243 (2015). https://doi.org/10.1109/LSP.2015.2472991.
Article
Google Scholar
A. Ghobadzadeh, S. Gazor, M. R. Taban, A. A. Tadaion, M. Gazor, Separating function estimation tests: A new perspective on binary composite hypothesis testing. IEEE Trans. Signal Process.60(11), 5626–5639 (2012). https://doi.org/10.1109/TSP.2012.2211594.
Article
MathSciNet
Google Scholar
S. M. Kay, Fundamentals of Statistical Signal Processing. Estimation Theory.
D. Birkes, Generalized likelihood ratio tests and uniformly most powerful tests. Am Stat.44(2), 163–166 (1990).
MathSciNet
Google Scholar
T. J. O’Shea, T. Roy, T. C. Clancy, Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process.12(1), 168–179 (2018).
Article
Google Scholar
X. Liu, D. Yang, A. E. Gamal, in 2017 51st Asilomar Conference on Signals, Systems, and Computers. Deep neural network architectures for modulation classification (IEEE, 2017), pp. 915–919.
Modulation Classification with Deep Learning. https://www.mathworks.com/help/deeplearning/ug/modulation-classification-with-deep-learning.html.
T. O’Shea, J. Hoydis, An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw.3(4), 563–575 (2017). https://doi.org/10.1109/TCCN.2017.2758370.
Article
Google Scholar
H. Flanders, J. J. Price, Calculus with Analytic Geometry (Elsevier Inc, Amsterdam, 1985).
MATH
Google Scholar