C. Huang, Y. Wang, X. Li, L. Ren, B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020)
Article
Google Scholar
M. Z. Alom, M. Rahman, M. S. Nasrin, T. M. Taha, V. K. Asari, COVID MTNet: COVID-19 detection with multi-task deep learning approaches (2020). arXiv:2004.03747
V. Rajinikanth, N. Dey, A. Raj, A. E. Hassanien, K. C. Santosh, M. Sri Harmony-search and otsu based system for coronavirus disease (COVID-19) detection using lung CT scan images (2020). arXiv:2004.03431
K. Hammoudi, H. Benhabiles, M. Melkemi, F. Dornaika, A. Scherpereel, Deep learning on chest X-ray images to detect and evaluate pneumonia cases at the era of COVID-19. J. Med. Syst., 45 (2021)
F. Shan, Y. Gao, J. Wang, W. Shi, N. Shi, M. Han, Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction. Med. Phys. 48, 1633–1645 (2021)
Article
Google Scholar
L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology, p. 200905 (2020)
S. Wang, B. Kang, J. Ma, X. Zeng, B. Xu, A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). Eur. Radiol. (2021)
O. Gozes, M. Frid-Adar, H. Greenspan, P. D. Browning, H. Zhang, W. Ji, A. Bernheim, E. Siegel, Rapid AI Development Cycle for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection and Patient Monitoring using Deep Learning CT Image Analysis (2020). arXiv:200305037v1
H. Kang, L. Xia, F. Yan, Z. Wan, F. Shi, H. Yuan, H. Jiang, D. Wu, H. Sui, C. Zhang, D. Shen, Sui, Diagnosis of Coronavirus Disease 2019 (COVID-19) with structured latent multi-view representation learning. IEEE Trans. Med. Imaging 39, 2606–2614 (2020)
Article
Google Scholar
X. Mei, H.C. Lee, K.Y. Diao, M. Huang, Y. Yang, Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat. Med. 26, 1224 (2020)
Article
Google Scholar
Z. Wang, Q. Liu, Q. Dou, Contrastive cross-site learning with redesigned net for COVID-19 CT classification. IEEE J. Biomed. Health Inform. 24, 2806–2813 (2020)
Article
Google Scholar
D.P. Fan, T. Zhou, G.P. Ji, Y. Zhou, L. Shao, Inf-Net: automatic COVID-19 lung infection segmentation from CT images. IEEE Trans. Med. Imaging 39, 2626–2637 (2020)
Article
Google Scholar
X. Wang, X. Deng, Q. Fu, Q. Zhou, C. Zheng, A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans. Med. Imaging 39, 2615–2625 (2020)
Article
Google Scholar
C. Zheng, X. Deng, Q. Fu, Q. Zhou, X. Wang, Deep learning-based detection for COVID-19 from chest CT using weak label. medRxiv (2020)
Y. Cao, Z. Xu, J. Feng, C. Jin, H. Shi, Longitudinal assessment of COVID-19 using a deep learning-based quantitative CT pipeline: illustration of two cases. Radiol. Cardiothor. Imaging 2, e200082 (2020)
Article
Google Scholar
L. Tang, X. Zhang, Y. Wang, X. Zeng, Severe COVID-19 pneumonia. Radiol. Cardiothor. Imaging 2, e200044 (2020)
Article
Google Scholar
I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, X. Bing, Y. Bengio, Generative adversarial nets. ACM Commun. 63, 139–144 (2020)
Article
Google Scholar
S. Kohl, D. Bonekamp, H.P. Schlemmer, K. Yaqubi, M. Hohenfellner, B. Hadaschik, Adversarial networks for the detection of aggressive prostate cancer (2020). arXiv:1702.08014 (2020)
S. Izadi, Z. Mirikharaji, J. Kawahara, G. Hamarneh, Generative adversarial networks to segment skin lesions. In: IEEE International Symposium on Biomedical Imaging (IEEE ISBI 2018), pp. 881–884
Z. Le, M. Pereanez, S.K. Piechnik, S. Neubauer, A.F. Frangi, Multi-input and dataset-invariant adversarial learning (MDAL) for left and right-ventricular coverage estimation in cardiac MRI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI 2018, pp. 481–489
M. Rezaei, H. Yang, C. Meinel, Conditional generative refinement adversarial networks for unbalanced medical image semantic segmentation. In: 19th IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1836–1845 (2019)
J. Tan, L. Jing, Y. Huo, Y. Tian, O. Akin, LGAN: lung segmentation in CT scans using generative adversarial network. Comput. Med. Imaging Graph. 87 (2021)
G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network. NeurIPS Workshop (2015)
A. Aguinaldo, P.Y. Chiang, A. Gain, A. Patil, K. Pearson, S. Feizi, Compressing gans using knowledge distillation (2019). arXiv:1902.00159
J. Yim, D. Joo, J. Bae, J. Kim, A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017, pp. 7130–7138
T. Li, J. Li, Z. Liu, & C. Zhang, Knowledge distillation from few samples (2018). arXiv:1812.01839
A. Oulefki, S. Agaian, T. Trongtirakul, A.K. Laouar, Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images. Pattern Recogn. (2021)
S. Jin, B. Wang, H. Xu, C. Luo, AI-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system in four weeks. MedRxiv (2020)
X. Zhang, S. Lu, S. Wang, X. Yu, Diagnosis of COVID-19 pneumonia via a novel deep learning architecture. Comput. Sci. Technol. (2021)
Y. Xue, T. Xu, H. Zhang, L.R. Long, X. Huang, SegAN: adversarial network with multi-scale L1 loss for medical image segmentation. Neuroinformatics 16(3) (2018)
A. Voulodimos, E. Protopapadakis, I. Katsamenis, A. Doulamis, Deep learning models for COVID-19 infected area segmentation in CT images. In: Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference (2021)
Q. Yao, L. Xiao, P. Liu, S.K. Zhou, Label-free segmentation of COVID-19 lesions in lung CT. IEEE Trans. Med. Imag. (2021)
I. Laradji, P. Rodriguez, O. Manas, K. Lensink, A weakly supervised consistency-based learning method for covid-19 segmentation in CT images. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, WACV, pp. 2453–2462 (2021)
X. He, X. Yang, S. Zhang, J. Zhao, Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. MedRxiv (2020)
S. Wang, B. Kang, J. Ma, X. Zeng, A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). Eur. Radiol. (2021)
A.K. Mishra, S.K. Das, P. Roy, S. Bandyopadhyay, Identifying COVID19 from chest CT images: a deep convolutional neural networks based approach, Heal. Eng. (2020)
T. Goel, R. Murugan, S. Mirjalili, D.K. Chakrabartty, Automatic screening of covid-19 using an optimized generative adversarial network. Cogn. Comp. (2021)
V. Shah, R. Keniya, A. Shridharani, M. Punjabi, Diagnosis of COVID-19 using CT scan images and deep learning techniques. Emerg. Radiol. 28(3) (2021)
W. Ning, S. Lei, J. Yang, Y. Cao, Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biol. Eng. 4(12), 1197–1207 (2020)
Article
Google Scholar
D. Singh, V. Kumar, M. Kaur, Densely connected convolutional networks-based COVID-19 screening model. Appl. Intell. 51(5), 3044–3051 (2021)
Article
Google Scholar
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. Comput. Sci. (2014)
D.M. Ibrahim, N.M. Elshennawy, A.M. Sarhan, Deep-chest: multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Comput. Biol. Med. (2021)
H. Jenssen. COVID-19 CT segmentation dataset. http://medicalsegmentation.com/covid19/
J. Cohen, P. Morrison, L. Dao, COVID-19 image data collection (2020). arXiv:2003.11597
J. Zhao, X. He, X. Yang, Y. Zhang, S. Zhang, P. Xie, COVID-CT-dataset: a CT scan dataset about COVID-19 (2020). arXiv:2003.13865
COVID-19 Patients Lungs X Ray Images 10000. https://www.kaggle.com/nabeelsajid917/covid-19-x-ray-10000-images (2020)
M. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z.B. Mahbub, Can AI help in screening viral and COVID-19 pneumonia? (2020). arXiv:2003.13145
E. Soares, P. Angelov, S. Biaso, M. Froes, D. Abe, SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification (2020). https://doi.org/10.1101/2020.04.24.20078584
J. Ma, G. Cheng, Y. Wang, X. An, J. Gao, Z. Yu, COVID-19 CT Lung and Infection Segmentation Dataset. Zenodo (2020). https://doi.org/10.5281/zenodo.3757476
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, vol. 27–30, pp. 770–778 (2016)
D. Ulyanov, A. Vedaldi, V. Lempitsky, Instance normalization: The missing ingredient for fast stylization (2016). arXiv:1607.08022
K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. (2017)