
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 95360, Pages 1–15
DOI 10.1155/ASP/2006/95360

A Systematic Approach toModified BCJRMAP
Algorithms for Convolutional Codes

SichunWang1 and François Patenaude2

1Defence Research and Development Canada – Ottawa, Ottawa, ON, Canada K1A 0Z4
2Communications Research Centre Canada, Ottawa, ON, Canada K2H 8S2

Received 19 November 2004; Revised 19 July 2005; Accepted 12 September 2005

Recommended for Publication by Vincent Poor

Since Berrou, Glavieux and Thitimajshima published their landmark paper in 1993, different modified BCJR MAP algorithms
have appeared in the literature. The existence of a relatively large number of similar but different modified BCJR MAP algorithms,
derived using the Markov chain properties of convolutional codes, naturally leads to the following questions. What is the relation-
ship among the different modified BCJR MAP algorithms? What are their relative performance, computational complexities, and
memory requirements? In this paper, we answer these questions. We derive systematically four major modified BCJR MAP algo-
rithms from the BCJR MAP algorithm using simple mathematical transformations. The connections between the original and the
four modified BCJR MAP algorithms are established. A detailed analysis of the different modified BCJR MAP algorithms shows
that they have identical computational complexities and memory requirements. Computer simulations demonstrate that the four
modified BCJR MAP algorithms all have identical performance to the BCJR MAP algorithm.

Copyright © 2006 S. Wang and F. Patenaude. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

In 1993, Berrou et al. [1] introduced new types of codes,
called turbo codes, which have demonstrated performance
close to the theoretical limit predicted by information the-
ory [2]. In the iterative decoding strategy for turbo codes, a
soft-input soft-output (SISO) MAP algorithm is used to per-
form the decoding operation for the two constituent recur-
sive systematic convolutional codes (RSC). The SISO MAP
algorithm presented in [1], which is called the BGT MAP al-
gorithm in [3], is a modified version of the BCJR MAP al-
gorithm proposed in [4]. The BGT MAP algorithm formally
appears very complicated. Later, Pietrobon and Barbulescu
derived a simpler modified BCJR MAP algorithm [5], which
is called the PB MAP algorithm [3]. However, the PB MAP
algorithm is not a direct simplification of the BGT MAP al-
gorithm, even though they share similar structures. In [3],
the BGT MAP algorithm is directly simplified to obtain a
new modified BCJR MAP algorithm that keeps the structure
of the BGT MAP algorithm but uses simpler recursive pro-
cedures. This new modified BCJR MAP algorithm is called
the SBGT MAP algorithm in [3]. The main difference be-
tween the SBGT and BGT MAP algorithms lies in the fact

that for the BGT MAP algorithm, the forward and backward
recursions (cf. [1, equations (21) and (22)]) are formulated
in such a way that redundant divisions are involved, whereas
in the SBGTMAP algorithm, these redundant computations
are removed.

In [3], it is also shown that the symmetry of the trel-
lis diagram of an RSC code can be utilized (albeit implic-
itly) to derive another modified BCJR MAP algorithm which
possesses a structure that is dual to that of the SBGT MAP
algorithm and has the same signal processing and memory
requirements. This new modified BCJR MAP algorithm is
called the dual SBGTMAP algorithm in [3]. The Dual SBGT
MAP algorithm will be called the DSBGT MAP algorithm in
this paper.

The BCJR and the modified BCJR MAP algorithms are
all derived from first principles by utilizing the Markov chain
properties of convolutional codes. Some of the modified
BCJR MAP algorithms, as well as the BCJR itself, have ac-
tually been implemented in hardware. From both theoretical
and practical perspectives, it is of great interest and impor-
tance to acquire an understanding of the exact relationship
among the different modified BCJR MAP algorithms and
their relative advantages.

2 EURASIP Journal on Applied Signal Processing

In this paper, we first derive the BCJR MAP algorithm
from first principles for a rate 1/n recursive systematic con-
volutional code, where n ≥ 2 is any positive integer. We then
systematically derive the aforementioned modified BCJR
MAP algorithms and a dual version of the PB MAP algo-
rithm from the BCJR MAP algorithm using simple mathe-
matical transformations. By doing this, we succeed in estab-
lishing simple connections among these algorithms. In par-
ticular, we show that the modified BCJR MAP algorithm of
Pietrobon and Barbulescu can be directly derived from the
SBGT MAP algorithm via two simple permutations.

A detailed analysis of the BCJR and the four modified
BCJR MAP algorithms formulated in this paper shows that
they all have identical computational complexities andmem-
ory requirements when implemented appropriately. System-
atic computer simulations demonstrate that the four modi-
fied BCJR MAP algorithms all have identical performance to
the BCJR MAP algorithm.

This paper is organized as follows. In Section 2, the now
classical BCJR MAP algorithm is revisited and the nota-
tion and terminology used in this paper are introduced. In
Section 3, it is shown how the SBGT MAP algorithm can be
derived from the BCJR MAP algorithm. In Section 4, a dual
version of the SBGT MAP algorithm (the dual SBGT MAP
algorithm or the DSBGT MAP algorithm) is derived from
the BCJR MAP algorithm. In Section 5, it is shown how the
PB MAP algorithm of Pietrobon and Barbulescu can be di-
rectly derived from the SBGTMAP algorithm by performing
simple permutations on the nodes of the trellis diagram of an
RSC code. In Section 6, by performing similar permutations,
a new modified BCJR MAP algorithm, called the DPB MAP
algorithm in this paper, is derived from the DSBGT MAP al-
gorithm. The DPB MAP algorithm can be considered a dual
version of the modified BCJR MAP algorithm of Pietrobon
and Barbulescu presented in Section 5. In Section 7, a de-
tailed comparative analysis of computational complexities
and memory requirements is carried out, where the BCJR
and the four modified BCJR MAP algorithms are shown
to have the same computational complexities and memory
requirements. In Section 8, computer simulations are dis-
cussed, which were performed for the rate 1/2 and rate 1/3
turbo codes defined in the CDMA2000 standard using the
BCJR, SBGT, DSBGT, PB, and DPB MAP algorithms. As ex-
pected, under identical simulation conditions, the BCJR and
the four modified BCJR MAP algorithms formulated here all
have identical BER (bit error rate) and FER (frame error rate)
performance. Finally, Section 9 concludes this paper.

2. THE BCJRMAP ALGORITHM REVISITED

To characterize the precise relationship between the origi-
nal BCJR MAP algorithm and the modified BCJR MAP al-
gorithms, we will present a detailed derivation of the origi-
nal BCJR MAP algorithm in this section and, in doing so, set
up the notation and terminology of this paper. Our deriva-
tions show that a proper initialization of the β sequence in
the BCJR MAP algorithm in fact does not require any a pri-
ori assumptions on the final state of the recursive systematic
convolutional code. In other words, no information on the

S0b(m) S0f (m)

S1b(m) S1f (m)

m

1

0

1

0

Figure 1: Transition diagram of an RSC code.

final encoder state is required in the derivation of the origi-
nal BCJR MAP algorithm. This statement also holds true for
the modified BCJR MAP algorithms. Note that in [4], it is
assumed that the final encoder state is the all-zero state.

Let n ≥ 2, v ≥ 1, τ ≥ 1 be positive integers and con-
sider a rate 1/n constraint length v + 1 binary recursive sys-
tematic convolutional (RSC) code. Given an input data bit
i and an encoder state m, the rate 1/n RSC encoder makes
a state transition from state m to a unique new state S and
produces an n-bit codeword X. The new encoder state S will
be denoted by Sif (m), i = 0, 1. The n bits of the codeword X
consist of the systematic data bit i and n−1 parity check bits.
These n− 1 parity check bits will be denoted, respectively, by
Y1(i,m),Y2(i,m), . . . ,Yn−1(i,m). On the other hand, there is
a unique encoder state T from which the encoder makes a
state transition to the state m for an input bit i. The encoder
state T will be denoted by Sib(m), i = 0, 1. The relationship
among the encoder state m and the encoder states S0b(m),
S1b(m), S0f (m), and S1f (m) is depicted by the state transition
diagram in Figure 1. It can be verified that each of the four
mappings S0b : m → S0b(m), S1b : m → S1b(m), S0f : m → S0f (m),

and S1f : m → S1f (m) is a one-to-one correspondence from
the set M = {0, 1, . . . , 2v − 1} onto itself. In other words,
each of the four mappings S0b, S

1
b, S

0
f , and S1f is a permuta-

tion from M = {0, 1, . . . , 2v − 1} onto itself. It can be ver-
ified that Sif (S

i
b(m)) = m and Sib(S

i
f (m)) = m for i = 0, 1,

m = 0, 1, . . . , 2v − 1.
Assume the encoder starts at the all-zero state S0 = 0 and

encodes a sequence of information data bits d1,d2,d3, . . . ,dτ .
At time t, the input into the encoder is dt , which induces
the encoder state transition from St−1 to St and gener-
ates an n-bit codeword (vector) Xt. The codewords Xt are
BPSK modulated and transmitted through an AWGN chan-
nel. The matched filter at the receiver yields a sequence of
noisy sample vectors Yt = 2Xt − 1 + Nt, t = 1, 2, 3, . . . , τ,
where 1 is the n-dimensional vector with all its components
equal to 1, Xt is an n-bit codeword consisting of zeros and
ones, and Nt is an n-dimensional random vector with i.i.d.
zero-mean Gaussian noise components with variance σ2 > 0.
Since there are v ≥ 1 memory cells in the RSC encoder, there
are M = 2v encoder states, represented by the nonnegative

S. Wang and F. Patenaude 3

integersm = 0, 1, 2, . . . , 2v − 1. Let

Yt
1 =

(
Y1, . . . ,Yt

)
, 1 ≤ t ≤ τ,

Yτ
t+1 =

(
Yt+1, . . . ,Yτ

)
, 1 ≤ t ≤ τ − 1,

Yt =
(
r(1)t , r(2)t , . . . , r(n)t

)
, 1 ≤ t ≤ τ,

(1)

where r(1)t is the matched filter output sample generated by

the systematic data bit dt and r(2)t , . . . , r(n)t are matched fil-
ter output samples generated by the n − 1 parity check bits
Y1(dt, St−1), . . . ,Yn−1(dt , St−1), respectively. Let

Λ
(
dt
) = log

Pr
{
dt = 1 | Yτ

1

}

Pr
{
dt = 0 | Yτ

1

} , 1 ≤ t ≤ τ, (2)

La
(
dt
) = log

Pr
{
dt = 1

}

Pr
{
dt = 0

} , 1 ≤ t ≤ τ. (3)

Λ(dt) and La(dt) are called, respectively, the a posteriori
probability (APP) sequence and the a priori information se-
quence of the input data sequence dt . In the first half itera-
tion of the turbo decoder, La(dt) = 0, since the input data
sequence dt is assumed i.i.d.

The BCJR MAP algorithm centres around the computa-
tion of the following joint probabilities:

λt(m) = Pr
{
St = m; Yτ

1

}
,

σt(m′,m) = Pr
{
St−1 = m′; St = m; Yτ

1

}
,

(4)

where 1 ≤ t ≤ τ and 0 ≤ m′,m ≤ 2v − 1.
To compute λt(m) and σt(m′,m), let us define the prob-

ability sequences

αt(m) = Pr
{
St = m; Yt

1

}
, 1 ≤ t ≤ τ,

βt(m) = Pr
{
Yτ
t+1 | St = m

}
, 1 ≤ t ≤ τ − 1,

γt(m′,m) = Pr
{
St = m; Yt | St−1 = m′}, 1 ≤ t ≤ τ,

γi
(
Yt,m′,m

) = Pr
{
dt = i; St = m; Yt | St−1 = m′},

i = 0, 1, 1 ≤ t ≤ τ.

(5)

At this stage, it is important to emphasize that βτ(m) and
α0(m) are not yet defined. In other words, the boundary con-
ditions or initial values for the backward and forward recur-
sions are undetermined. The boundary values (initial condi-
tions) will be determined shortly from the inherent logical
consistency among the computed probabilities.

Now assume that 1 ≤ t ≤ τ − 1. We have

λt(m) = Pr
{
St = m; Yτ

1

}

= Pr
{
St = m; Yt

1; Y
τ
t+1

}

= Pr
{
St = m; Yt

1

}
Pr
{
Yτ
t+1 | St = m; Yt

1

}

= Pr
{
St = m; Yt

1

}
Pr
{
Yτ
t+1 | St = m

}

= αt(m)βt(m).

(6)

Here we used the equality

Pr
{
Yτ
t+1 | St = m; Yt

1

} = Pr
{
Yτ
t+1 | St = m

}
, (7)

which follows from the Markov chain property that if St is
known, events after time t do not depend on Yt

1. Similar facts
are used in a number of places in this paper. The reader is re-
ferred to [6] for more detailed discussions onMarkov chains.

Now let t = τ. We have

λτ(m) = Pr
{
St = m; Yτ

1

} = Pr
{
St = m; Yt

1

}

= αt(m)× 1 = αt(m)βt(m).
(8)

Here for the first time, we have defined βτ(m) = 1, m =
0, 1, . . . , 2v − 1. Note that βτ(m) was not defined in (5).

It can be shown that σt(m′,m) can be expressed in terms
of the α, β, and γ sequences. In fact, if 2 ≤ t ≤ τ − 1, we have

σt(m′,m) = Pr
{
St−1 = m′; St = m; Yτ

1

}

= Pr
{
St−1 = m′; Yt−1

1 ; St = m; Yt ; Yτ
t+1

}

= Pr
{
St−1 = m′; Yt−1

1

}

× Pr
{
St = m; Yt; Yτ

t+1 | St−1 = m′; Yt−1
1

}

= αt−1(m′)

× Pr
{
Yτ
t+1 | St−1 = m′; Yt−1

1 ; St = m; Yt
}

× Pr
{
St = m; Yt | St−1 = m′; Yt−1

1

}

= αt−1(m′) Pr
{
Yτ
t+1 | St = m

}

× Pr
{
St = m; Yt | St−1 = m′}

= αt−1(m′)γt(m′,m)βt(m),

(9)

and if t = τ, we obtain

σt(m′,m) = Pr
{
St−1 = m′; St = m; Yτ

1

}

= Pr
{
St−1 = m′; Yτ−1

1 ; St = m; Yτ
}

= Pr
{
St−1 = m′; Yt−1

1 ; St = m; Yt
}

= Pr
{
St−1 = m′; Yt−1

1

}

× Pr
{
St = m; Yt | St−1 = m′; Yt−1

1

}

= αt−1(m′) Pr
{
St = m; Yt | St−1 = m′; Yt−1

1

}

= αt−1(m′) Pr
{
St = m; Yt | St−1 = m′}

= αt−1(m′)γt(m′,m)

= αt−1(m′)γt(m′,m)βt(m).
(10)

Here we used the Markov chain property and the definition
that βτ(m) = 1.

4 EURASIP Journal on Applied Signal Processing

It remains to check the case t = 1. If t = 1, we have

σt(m′,m) = Pr
{
St−1 = m′; St = m; Yτ

1

}

= Pr
{
St−1 = m′; St = m; Yt ; Yτ

t+1

}

= Pr
{
St = m; Yt ; Yτ

t+1 | St−1 = m′}

× Pr
{
St−1 = m′}

= Pr
{
Yτ
t+1 | St = m; Yt; St−1 = m′}

× Pr
{
St = m; Yt | St−1 = m′}

× Pr
{
St−1 = m′}

= Pr
{
Yτ
t+1 | St = m

}
γt(m′,m) Pr

{
St−1 = m′}

= βt(m)γt(m′,m)αt−1(m′),
(11)

where we have defined α0(m′) = Pr{St−1 = m′}. Since it is
assumed that the recursive systematic convolutional (RSC)
code always starts from the all-zero state S0 = 0, we have
α0(0) = 1 and α0(m) = 0, 1 ≤ m ≤ 2v − 1.

To proceed further, we digress here to introduce some no-
tation. A directed branch on the trellis diagram of a recursive
systematic convolutional (RSC) code is completely charac-
terized by the node it emanates from and the node it reaches.
In other words, a directed branch on the trellis diagram of
an RSC code is identified by an ordered pair of nonnegative
integers (m′,m), where 0 ≤ m′,m ≤ 2v − 1. We remark here
that not every ordered pair of integers (m′,m) can be used
to identify a directed branch. Let Bt,0 = {(m′,m) : St−1 =
m′, dt = 0, St = m} and Bt,1 = {(m′,m) : St−1 = m′, dt =
1, St = m}. Bt,0 (resp., Bt,1) represents the set of all the di-
rected branches on the trellis diagram of an RSC code where
the tth input bit dt is 0 (resp., 1).

With the above definitions, we are now in a position to
present the forward and backward recursions for the α and β
sequences and the formula for computing the APP sequence
Λ(dt).

In fact, if 2 ≤ t ≤ τ, we have

αt(m) = Pr
{
St = m; Yt

1

}

=
2v−1∑

m′=0
Pr
{
St−1 = m′; Yt−1

1 ; St = m; Yt
}

=
2v−1∑

m′=0
Pr
{
St−1 = m′; Yt−1

1

}

× Pr
{
St = m; Yt | St−1 = m′; Yt−1

1

}

=
2v−1∑

m′=0
Pr
{
St−1 = m′; Yt−1

1

}

× Pr
{
St = m; Yt | St−1 = m′}

=
2v−1∑

m′=0
αt−1(m′)γt(m′,m),

(12)

and if t = 1, we have

αt(m) = Pr
{
St = m; Yt

1

} = Pr
{
St = m; Yt

}

=
2v−1∑

m′=0
Pr
{
St−1 = m′; St = m; Yt

}

=
2v−1∑

m′=0
Pr
{
St−1 = m′}

× Pr
{
St = m; Yt | St−1 = m′}

=
2v−1∑

m′=0
αt−1(m′)γt(m′,m).

(13)

Similarly, if 1 ≤ t ≤ τ − 2, we have

βt(m) = Pr
{
Yτ
t+1 | St = m

}

=
2v−1∑

m′=0
Pr
{
St+1 = m′; Yt+1; Yτ

t+2 | St = m
}

=
2v−1∑

m′=0
Pr
{
Yτ
t+2 | St+1 = m′; Yt+1; St = m

}

× Pr
{
St+1 = m′; Yt+1 | St = m

}

=
2v−1∑

m′=0
Pr
{
Yτ
t+2 | St+1 = m′}

× Pr
{
St+1 = m′; Yt+1 | St = m

}

=
2v−1∑

m′=0
βt+1(m′)γt+1(m,m′),

(14)

where we used the Markov chain property of the RSC code.
If t = τ − 1, we have

βt(m) = Pr
{
Yτ
t+1 | St = m

}

= Pr
{
Yt+1 | St = m

}

=
2v−1∑

m′=0
Pr
{
St+1 = m′; Yt+1 | St = m

}

=
2v−1∑

m′=0
γt+1(m,m′)

=
2v−1∑

m′=0
βt+1(m′)γt+1(m,m′),

(15)

where we used the definition that βτ(m′) = 1.
We can also easily verify that for i = 0, 1,

Pr
{
dt = i | Yτ

1

} =
∑

(m′,m)∈Bt,i
Pr
{
St−1 = m′, St = m, Yτ

1

}

Pr
(
Yτ
1

)

=
∑

(m′,m)∈Bt,i

σt(m′,m)
Pr
(
Yτ
1

) .

(16)

S. Wang and F. Patenaude 5

It follows from (2), (9), (10), (11), and (16) that the APP
sequence Λ(dt) is computed by

Λ
(
dt
) = log

∑
(m′,m)∈Bt,1

(σt(m′,m)/ Pr
(
Yτ
1

)
)

∑
(m′,m)∈Bt,0

(σt(m′,m)/ Pr
(
Yτ
1

)
)

= log

∑
(m′,m)∈Bt,1

σt(m′,m)
∑

(m′,m)∈Bt,0
σt(m′,m)

= log

∑
(m′,m)∈Bt,1

αt−1(m′)γt(m′,m)βt(m)
∑

(m′,m)∈Bt,0
αt−1(m′)γt(m′,m)βt(m)

,

(17)

where 1 ≤ t ≤ τ and αt−1(m′) are computed by the for-
ward recursions (12) and (13) and βt(m) are computed by
the backward recursions (14) and (15).

Equations (12), (13), (14), (15), and (17) constitute the
well-known BCJR MAP algorithm for recursive systematic
convolutional codes.

We can further simplify and reformulate the BCJR MAP
algorithm for a binary rate 1/n recursive systematic convolu-
tional code. In fact,

γt(m′,m) = Pr
{
St = m; Yt | St−1 = m′}

=
1∑

i=0
Pr
{
Yt; dt = i; St = m | St−1 = m′}

=
1∑

i=0
γi
(
Yt,m′,m

)
,

(18)

where

γi
(
Yt ,m′,m

) = Pr
{
Yt ; dt = i; St = m | St−1 = m′}

= Pr
{
Yt | dt = i; St = m; St−1 = m′}

× Pr
{
dt = i; St = m | St−1 = m′}

= Pr
{
Yt | dt = i; St = m; St−1 = m′}

× Pr
{
St = m | dt = i; St−1 = m′}

× Pr
{
dt = i | St−1 = m′}

= Pr
{
Yt | dt = i; St−1 = m′}

× Pr
{
St = m | dt = i; St−1 = m′}

× Pr
{
dt = i

}
.

(19)

Substituting (18), (19) into (12) and (13), we obtain

αt(m) =
2v−1∑

m′=0
αt−1(m′)γt(m′,m)

=
2v−1∑

m′=0
αt−1(m′)

1∑

j=0
γj
(
Yt,m′,m

)

=
2v−1∑

m′=0
αt−1(m′)

×
1∑

j=0
Pr
{
Yt | dt = j; St−1 = m′}

× Pr
{
St = m | dt = j; St−1 = m′}

× Pr
{
dt = j

}

=
1∑

j=0
αt−1

(
S
j
b(m)

)
Pr
{
dt = j

}

× Pr
{
Yt | dt = j; St−1 = S

j
b(m)

}
.

(20)

Here we used the fact that for any given state m, the proba-
bility Pr{St = m | dt = j; St−1 = m′} is nonzero if and only

if m′ = S
j
b(m) and Pr{St = m | dt = j; St−1 = S

j
b(m)} = 1.

By Proposition A.1 in the appendix, we have, for j = 0, 1,

Pr
{
dt = j

} = exp
(
La
(
dt
)
j
)

1 + exp
(
La
(
dt
)) . (21)

By Proposition A.2 in the appendix, we also have, for j = 0, 1,
and 0 ≤ m ≤ 2v − 1,

Pr
{
Yt | dt = j; St−1 = S

j
b(m)

}

= μt exp

(

Lcr
(1)
t j +

n∑

p=2
Lcr

(p)
t Yp−1

(
j, S

j
b(m)

)
)

,
(22)

where μt > 0 is a positive constant independent of j and m
and Lc = 2/σ2 is called the channel reliability coefficient. Us-
ing (21) and (22), the identity (20) can be rewritten as

αt(m) =
1∑

j=0
αt−1

(
S
j
b(m)

)
Pr
{
dt = j

}

× Pr
{
Yt | dt = j; St−1 = S

j
b(m)

}

= δt

1∑

j=0
αt−1

(
S
j
b(m)

)

× exp j
(
La
(
dt
)
+ Lcr

(1)
t

)

× exp
n∑

p=2
Lcr

(p)
t Yp−1

(
j, S

j
b(m)

)

= δt

1∑

j=0
αt−1

(
S
j
b(m)

)
Γt
(
j, S

j
b(m)

)
,

(23)

6 EURASIP Journal on Applied Signal Processing

where δt = μt/(1 + exp(La(dt))) and for j = 0, 1 and 0 ≤
m ≤ 2v − 1, Γt(j,m) is defined by

Γt(j,m) = exp

(

j
(
La
(
dt
)
+ Lcr

(1)
t

)
+

n∑

p=2
Lcr

(p)
t Yp−1(j,m)

)

.

(24)

Similarly, from (14), (15), (18), (19), and using Propositions
A.1 and A.2 in the appendix, it can be shown that

βt(m) =
2v−1∑

m′=0
βt+1(m′)γt+1(m,m′)

=
2v−1∑

m′=0
βt+1(m′)

1∑

j=0
γj
(
Yt+1,m,m′)

=
1∑

j=0

2v−1∑

m′=0
βt+1(m′) Pr

{
dt+1 = j

}

× Pr
{
Yt+1 | dt+1 = j; St = m

}

× Pr
{
St+1 = m′ | dt+1 = j; St = m

}

=
1∑

j=0
βt+1

(
S
j
f (m)

)
Pr
{
dt+1 = j

}

× Pr
{
Yt+1 | dt+1 = j; St = m

}

= δt+1

1∑

j=0
βt+1

(
S
j
f (m)

)

× exp j
(
La
(
dt+1

)
+ Lcr

(1)
t+1

)

× exp
n∑

p=2
Lcr

(p)
t+1Yp−1(j,m)

= δt+1

1∑

j=0
βt+1(S

j
f (m))Γt+1(j,m),

(25)

where δt+1 = μt+1/(1 + exp(La(dt+1))).
Using mathematical induction, it can be shown that the

multiplicative constants δt , δt+1 can be set to 1 without
changing the APP sequence Λ(dt) (cf. Proposition A.3 in the
appendix) and the BCJR MAP algorithm can be finally for-
mulated as follows. Let the α sequence be computed by the
forward recursion

α0(0) = 1,

α0(m) = 0, 1 ≤ m ≤ 2v − 1,

αt(m) =
1∑

j=0
αt−1

(
S
j
b(m)

)
Γt
(
j, S

j
b(m)

)
,

1 ≤ t ≤ τ − 1, 0 ≤ m ≤ 2v − 1,

(26)

and let the β sequence be computed by the backward recur-
sion

βτ(m) = 1, 0 ≤ m ≤ 2v − 1,

βt(m) =
1∑

j=0
βt+1

(
S
j
f (m)

)
Γt+1(j,m),

1 ≤ t ≤ τ − 1, 0 ≤ m ≤ 2v − 1.

(27)

The APP sequence Λ(dt) is then computed by

Λ
(
dt
) = log

∑
(m,m′)∈Bt,1

αt−1(m)γt(m,m′)βt(m′)
∑

(m,m′)∈Bt,0
αt−1(m)γt(m,m′)βt(m′)

= log

∑2v−1
m=0 αt−1(m)γt

(
m, S1f (m)

)
βt
(
S1f (m)

)

∑2v−1
m=0 αt−1(m)γt

(
m, S0f (m)

)
βt
(
S0f (m)

)

= log

∑2v−1
m=0 αt−1(m)γ1

(
Yt ,m, S1f (m)

)
βt
(
S1f (m)

)

∑2v−1
m=0 αt−1(m)γ0

(
Yt ,m, S0f (m)

)
βt
(
S0f (m)

)

= log

∑2v−1
m=0 αt−1(m)Γt(1,m)βt

(
S1f (m)

)

∑2v−1
m=0 αt−1(m)Γt(0,m)βt

(
S0f (m)

)

= La
(
dt
)
+ Lcr

(1)
t +Λe

(
dt
)
,

(28)

where Λe(dt), the extrinsic information for data bit dt, is de-
fined by

Λe
(
dt
) = log

∑2v−1
m=0 αt−1(m)η1(m)βt

(
S1f (m)

)

∑2v−1
m=0 αt−1(m)η0(m)βt

(
S0f (m)

) ,

ηi(m) = exp
n∑

p=2
Lcr

(p)
t Yp−1(i,m), i = 0, 1.

(29)

The BCJRMAP algorithm can be reformulated systemat-
ically in a number of different ways, resulting in the so-called
modified BCJR MAP algorithms. They are discussed in the
following sections.

3. THE SBGTMAP ALGORITHM

In this section, we derive the SBGTMAP algorithm from the
BCJR MAP algorithm. For i = 0, 1 and 1 ≤ t ≤ τ, let

αit(m) =
∑

(m′,m)∈Bt,i

αt−1(m′)γt(m′,m). (30)

Equation (17) can then be rewritten as

Λ
(
dt
) = log

∑2v−1
m=0 α

1
t (m)βt(m)

∑2v−1
m=0 α

0
t (m)βt(m)

, (31)

S. Wang and F. Patenaude 7

since

∑
(m′,m)∈Bt,1

αt−1(m′)γt(m′,m)βt(m)
∑

(m′,m)∈Bt,0
αt−1(m′)γt(m′,m)βt(m)

=
∑2v−1

m=0 βt(m)
∑

(m′,m)∈Bt,1
αt−1(m′)γt(m′,m)

∑2v−1
m=0 βt(m)

∑
(m′,m)∈Bt,0

αt−1(m′)γt(m′,m)

=
∑2v−1

m=0 α
1
t (m)βt(m)

∑2v−1
m=0 α

0
t (m)βt(m)

.

(32)

Moreover, αit(m) admits the probabilistic interpretation:

αit(m) =
∑

(m′,m)∈Bt,i

αt−1(m′)γt(m′,m)

=
∑

(m′,m)∈Bt,i

Pr
{
St−1 = m′; Yt−1

1

}

× Pr
{
St = m; Yt | St−1 = m′}

=
∑

(m′,m)∈Bt,i

Pr
{
St−1 = m′; Yt−1

1

}

× Pr
{
St = m; Yt | St−1 = m′; Yt−1

1

}

=
∑

(m′,m)∈Bt,i

Pr
{
St = m; Yt

1; St−1 = m′}

= Pr
{
dt = i; St = m; Yt

1

}
.

(33)

It is shown below that αit(m) can be computed by the follow-
ing forward recursions

α00(0) = α10(0) = 1,

αi0(m) = 0, 1 ≤ m ≤ 2v − 1, i = 0, 1,

αit(m) =
2v−1∑

m′=0

1∑

j=0
α
j
t−1(m

′) γi
(
Yt ,m′,m

)
,

1 ≤ t ≤ τ, i = 0, 1, 0 ≤ m ≤ 2v − 1,

(34)

and βt(m) can be computed by (14), (15), and (18), which
are repeated here for easy reference:

βτ(m) = 1, 0 ≤ m ≤ 2v − 1,

βt(m) =
2v−1∑

m′=0

1∑

i=0
βt+1(m′)γi

(
Yt+1,m,m′),

1 ≤ t ≤ τ − 1, 0 ≤ m ≤ 2v − 1.

(35)

In fact, from (12) and (13), it follows that for 1 ≤ t ≤ τ,

αt(m) =
2v−1∑

m′=0
αt−1(m′)γt(m′,m)

=
1∑

j=0

∑

(m′,m)∈Bt, j

αt−1(m′)γt(m′,m)

=
1∑

j=0
α
j
t (m).

(36)

Substituting (36) into (30), we obtain, for 2 ≤ t ≤ τ,

αit(m) =
∑

(m′,m)∈Bt,i

αt−1(m′)γt(m′,m)

=
∑

(m′,m)∈Bt,i

1∑

j=0
α
j
t−1(m

′)γt(m′,m)

=
∑

(m′,m)∈Bt,i

1∑

j=0
α
j
t−1(m

′)

×[γi
(
Yt,m′,m

)
+γ1−i

(
Yt,m′,m

)]

=
∑

(m′,m)∈Bt,i

1∑

j=0
α
j
t−1(m

′)γi
(
Yt,m′,m

)

=
2v−1∑

m′=0

1∑

j=0
α
j
t−1(m

′)γi
(
Yt,m′,m

)
.

(37)

Here we used (18) and the fact that for anym′ with (m′,m) ∈
Bt,i, γ1−i(Yt,m′,m) = 0 (cf. Proposition A.4 in the ap-
pendix). This proves the forward recursions (34) for 2 ≤ t ≤
τ. Using (30) and the fact that α0(0) = 1 and α0(m) = 0,
m �= 0, it can be verified directly that the forward recursion
(37) holds also for t = 1 if αi0(m) are defined by

α00(0) = α10(0) =
1
2
,

αi0(m) = 0, 1 ≤ m ≤ 2v − 1, i = 0, 1.

(38)

Using essentially the same argument as the one used in the
proof of Proposition A.3 in the appendix, it can be shown

that the values of αi0(m) can be reinitialized as α
j
0(0) = 1,

α
j
0(m

′) = 0, j = 0, 1 ,m′ �= 0. This proves the forward recur-
sions (34) for αit(m).

Equations (34), (35), and (31) constitute a simplified ver-
sion of the modified BCJR MAP algorithm developed by
Berrou et al. in the classical paper [1]. We remark here that
the main difference between the version presented here and
the version in [1] is that the redundant divisions in [1, equa-
tions (20), (21)] are now removed. As mentioned in the in-
troduction, for brevity, the modified BCJR MAP algorithm
of [1] is called the BGT MAP algorithm and its simplified
version presented in this section is called the SBGT MAP al-
gorithm (or simply called the SBGT algorithm).

8 EURASIP Journal on Applied Signal Processing

Using (19), (A.2), (A.4), and applying a mathematical in-
duction argument similar to the one used in the proof of
Proposition A.3 in the appendix, the SBGT MAP algorithm
can be further simplified and reformulated. Details are omit-
ted here due to space limitations and the reader is referred
to [3] for similar simplifications. In summary, the APP se-
quence Λ(dt) is computed by (31), where αit(m) are com-
puted by the forward recursions

α00(0) = α10(0) = 1,

αi0(m) = 0, 1 ≤ m ≤ 2v − 1, i = 0, 1,

αit(m) =
(1∑

j=0
α
j
t−1
(
Sib(m)

)
)

Γt
(
i, Sib(m)

)
,

1 ≤ t ≤ τ, i = 0, 1, 0 ≤ m ≤ 2v − 1,

(39)

and βt(m) are computed by (27) which is repeated here for
easy reference and comparisons:

βτ(m) = 1, 0 ≤ m ≤ 2v − 1,

βt(m) =
1∑

j=0
βt+1

(
S
j
f (m)

)
Γt+1(j,m),

1 ≤ t ≤ τ − 1, 0 ≤ m ≤ 2v − 1.

(40)

Note that the branch metric Γt(j,m) is defined in (24).

4. THE DUAL SBGT (DSBGT) MAP ALGORITHM

This section derives from the BCJR MAP algorithm a dual
version of the SBGT MAP algorithm. For i = 0, 1, and 1 ≤
t ≤ τ, let

βit(m) =
∑

(m,m′)∈Bt,i

γt(m,m′)βt(m′). (41)

Using this notation, (17) can be rewritten as

Λ
(
dt
) = log

∑2v−1
m=0 αt−1(m)β1t (m)

∑2v−1
m=0 αt−1(m)β0t (m)

, 1 ≤ t ≤ τ, (42)

since

∑
(m,m′)∈Bt,1

αt−1(m)γt(m,m′)βt(m′)
∑

(m,m′)∈Bt,0
αt−1(m)γt(m,m′)βt(m′)

=
∑2v−1

m=0 αt−1(m)
∑

(m,m′)∈Bt,1
γt(m,m′)βt(m′)

∑2v−1
m=0 αt−1(m)

∑
(m,m′)∈Bt,0

γt(m,m′)βt(m′)

=
∑2v−1

m=0 αt−1(m)β1t (m)
∑2v−1

m=0 αt−1(m)β0t (m)
, 1 ≤ t ≤ τ.

(43)

Moreover, βit(m) admits the probabilistic interpretation:

βit(m) =
∑

(m,m′)∈Bt,i

γt(m,m′)βt(m′)

=
∑

(m,m′)∈Bt,i

Pr
{
St = m′; Yt | St−1 = m

}

× Pr
{
Yτ
t+1 | St = m′}

=
∑

(m,m′)∈Bt,i

Pr
{
St = m′; Yt | St−1 = m

}

× Pr
{
Yτ
t+1 | St = m′; Yt

}

= Pr
{
dt = i; Yτ

t | St−1 = m
}
.

(44)

The sequence αt(m) is computed recursively by (12), (13),
and (18), which are repeated here for easy reference and com-
parisons:

α0(0) = 1,

α0(m) = 0, 1 ≤ m ≤ 2v − 1,

αt(m) =
2v−1∑

m′=0

1∑

i=0
αt−1(m′)γi

(
Yt ,m′,m

)
,

1 ≤ t ≤ τ, 0 ≤ m ≤ 2v − 1.

(45)

The sequence βit(m) is computed recursively by the following
backward recursions as will be shown next:

βiτ+1(m) = 1, i = 0, 1, 0 ≤ m ≤ 2v − 1,

βit(m) =
2v−1∑

m′=0

1∑

j=0
β
j
t+1(m

′)γi
(
Yt ,m,m′),

1 ≤ t ≤ τ, 0 ≤ m ≤ 2v − 1.

(46)

In fact, from (14) and (15), it follows that for 1 ≤ t ≤ τ − 1,

βt(m) =
2v−1∑

m′=0
βt+1(m′)γt+1(m,m′)

=
1∑

j=0

∑

(m,m′)∈Bt+1, j

βt+1(m′)γt+1(m,m′)

=
1∑

j=0
β
j
t+1(m).

(47)

S. Wang and F. Patenaude 9

Substituting (47) into (41) and using (18), we obtain, for 1 ≤
t ≤ τ − 1,

βit(m) =
∑

(m,m′)∈Bt,i

γt(m,m′)βt(m′)

=
∑

(m,m′)∈Bt,i

γt(m,m′)
1∑

j=0
β
j
t+1(m

′)

=
∑

(m,m′)∈Bt,i

[
γi
(
Yt ,m,m′) + γ1−i

(
Yt,m,m′)]

×
1∑

j=0
β
j
t+1(m

′)

=
∑

(m,m′)∈Bt,i

1∑

j=0
γi
(
Yt,m,m′)βj

t+1(m
′)

=
2v−1∑

m′=0

1∑

j=0
γi
(
Yt ,m,m′)βj

t+1(m
′).

(48)

Here we used the fact that for (m,m′)∈Bt,i, γ1−i(Yt,m,m′)=
0 (cf. Proposition A.4 in the appendix). This proves the back-
ward recursions (46) for 1 ≤ t ≤ τ−1. Using (41) and the fact
that βτ(m) = 1, 0 ≤ m ≤ 2v − 1, it can also be verified that

(48) holds for t = τ if β
j
τ+1(m

′) is defined by β
j
τ+1(m

′) = 1/2,
0 ≤ m′ ≤ 2v − 1.

As in the derivation of the SBGT MAP algorithm, us-
ing a mathematical induction argument similar to the one
used in the proof of Proposition A.3 in the appendix, it can

be shown that the values of β
j
τ+1(m

′) can be reinitialized as

β
j
τ+1(m

′) = 1, j = 0, 1, m′ = 0, 1, . . . , 2v − 1, without hav-
ing any impact on the final computation of Λ(dt). This com-
pletes the proof of the backward recursive relations (46) for
the βit(m) sequence.

Equations (45), (46), and (42) constitute an MAP algo-
rithm that is dual in structure to the SBGT MAP algorithm.
It is thus called the dual SBGT MAP algorithm in [3]. In
this paper, the dual SBGT MAP algorithm will be called the
DSBGT MAP algorithm (or simply called the DSBGT algo-
rithm).

Using (19), (A.2), (A.4), and applying a mathematical in-
duction argument similar to the one used in the proof of
Proposition A.3 in the appendix, the DSBGTMAP algorithm
can be further simplified and reformulated (details are omit-
ted). The APP sequence Λ(dt) is computed by (42) where
αt(m) are computed by (26) which is repeated here for easy
reference and comparisons:

α0(0) = 1,

α0(m) = 0, 1 ≤ m ≤ 2v − 1,

αt(m) =
1∑

j=0
αt−1

(
S
j
b(m)

)
Γt
(
j, S

j
b(m)

)
,

1 ≤ t ≤ τ − 1, 0 ≤ m ≤ 2v − 1,

(49)

and βit(m) are computed by the backward recursions

βiτ+1(m) = 1, 0 ≤ m ≤ 2v − 1, i = 0, 1,

βit(m) =
(1∑

j=0
β
j
t+1

(
Sif (m)

)
)

Γt(i,m),

1 ≤ t ≤ τ, 0 ≤ m ≤ 2v − 1, i = 0, 1.

(50)

5. THE PBMAP ALGORITHMDERIVED FROM
THE SBGTMAP ALGORITHM

In this section, we show that the modified BCJR MAP algo-
rithm of Pietrobon and Barbulescu can be derived from the
SBGT MAP algorithm via simple permutations.

In fact, since the two mappings S1f and S0f are one-to-
one correspondences from the set {0, 1, 2, . . . , 2v − 1} onto
itself, from (31) it follows that the APP sequence Λ(dt) can
be rewritten as

Λ
(
dt
) = log

∑2v−1
m=0 α

1
t (m)βt(m)

∑2v−1
m=0 α

0
t (m)βt(m)

= log

∑2v−1
m=0 α

1
t

(
S1f (m)

)
βt
(
S1f (m)

)

∑2v−1
m=0 α

0
t

(
S0f (m)

)
βt
(
S0f (m)

) .

(51)

Define

ait(m) = αit
(
Sif (m)

)
,

bit(m) = βt
(
Sif (m)

)
.

(52)

Then the APP sequence Λ(dt) can be computed by

Λ
(
dt
) = log

∑2v−1
m=0 a

1
t (m)b1t (m)

∑2v−1
m=0 a

0
t (m)b0t (m)

. (53)

It can be verified that

ait(m) = αit
(
Sif (m)

)

= Pr
{
dt = i; St = Sif (m); Yt

1

}

= Pr
{
dt = i; St−1 = m; Yt

1

}
,

1 ≤ t ≤ τ, 0 ≤ m ≤ 2v − 1,

bit(m) = βt
(
Sif (m)

)

= Pr
{
Yτ
t+1 | St = Sif (m)

}

= Pr
{
Yτ
t+1 | dt = i; St−1 = m

}
,

1 ≤ t ≤ τ − 1, 0 ≤ m ≤ 2v − 1.

(54)

The two equations of (54) show that ait(m) and bit(m) are
exactly the same as the αit(m) and βit(m) sequences defined in
[5].

We can immediately derive the forward and backward re-
cursions for ait(m) and bit(m) from the recursions (34) and
(35).

10 EURASIP Journal on Applied Signal Processing

In fact, from the third equation of (34) it follows that for
1 ≤ t ≤ τ,

ait(m) = αit
(
Sif (m)

)
(by definition)

=
2v−1∑

m′=0

1∑

j=0
α
j
t−1(m

′)γi
(
Yt,m′, Sif (m)

)
(by (34))

=
1∑

j=0

2v−1∑

m′=0
α
j
t−1(m

′)γi
(
Yt,m′, Sif (m)

)

=
1∑

j=0

2v−1∑

m′=0
α
j
t−1
(
S
j
f (m

′)
)
γi
(
Yt , S

j
f (m

′), Sif (m)
)

=
1∑

j=0

2v−1∑

m′=0
a
j
t−1(m

′)γi
(
Yt , S

j
f (m

′), Sif (m)
)

=
1∑

j=0

2v−1∑

m′=0
a
j
t−1(m

′)γj,i
(
Yt,m′,m

)
,

(55)

where

γj,i
(
Yt,m′,m

) = γi
(
Yt , S

j
f (m

′), Sif (m)
)
. (56)

From the first and second equations of (34), it follows that
for i = 0, 1,

ai0(m) = 1, form = Sib(0),

ai0(m) = 0, form �= Sib(0).
(57)

The backward recursions for bit(m) are similarly derived. In
fact, from the second equation of (35), it follows that for 1 ≤
t ≤ τ − 1,

bit(m) = βt
(
Sif (m)

)
(by definition)

=
2v−1∑

m′=0

1∑

j=0
βt+1(m′)γj

(
Yt+1, Sif (m),m′) (by (35))

=
1∑

j=0

2v−1∑

m′=0
βt+1(m′)γj

(
Yt+1, Sif (m),m′)

=
1∑

j=0

2v−1∑

m′=0
βt+1

(
S
j
f (m

′)
)
γj
(
Yt+1, Sif (m), S

j
f (m

′)
)

=
1∑

j=0

2v−1∑

m′=0
b
j
t+1(m

′)γj
(
Yt+1, Sif (m), S

j
f (m

′)
)

=
1∑

j=0

2v−1∑

m′=0
b
j
t+1(m

′)γi, j
(
Yt+1,m,m′),

(58)

and from the first equation of (35), it follows that

biτ(m) = βτ
(
Sif (m)

) = 1, i = 0, 1. (59)

Equations (53), (55), (56), (57), (58), and (59) constitute
the modified BCJR MAP algorithm of Pietrobon and Bar-
bulescu developed in [5]. As mentioned in the introduction,
for brevity, this algorithm is also called the PB MAP algo-
rithm (or simply called the PB algorithm).

Using (19), (A.2), (A.4), and applying a mathematical in-
duction argument similar to the one used in the proof of
Proposition A.3 in the appendix, the PB MAP algorithm can
be further simplified and reformulated as follows. The APP
sequence Λ(dt) is computed by (53), where ait(m) are com-
puted by the forward recursions

ai0(m) = 1, m = Sib(0),

ai0(m) = 0, m �= Sib(0),

ait(m) =
(1∑

j=0
a
j
t−1
(
S
j
b(m)

)
)

Γt(i,m),

1 ≤ t ≤ τ, 0 ≤ m ≤ 2v − 1,

(60)

and bit(m) are computed by the backward recursions

biτ(m) = 1, 0 ≤ m ≤ 2v − 1,

bit(m) =
1∑

j=0
b
j
t+1

(
Sif (m)

)
Γt+1

(
j, Sif (m)

)
,

1 ≤ t ≤ τ − 1, 0 ≤ m ≤ 2v − 1.

(61)

6. THE DUAL PB (DPB) MAP ALGORITHM

The dual SBGT (DSBGT) MAP algorithm presented in
Section 4 can be reformulated via permutations to obtain a
dual version of the PB MAP algorithm.

In fact, since the two mappings S1b and S0b are one-to-
one correspondences from the set {0, 1, 2, . . . , 2v − 1} onto
itself, from (42) it follows that the APP sequence Λ(dt) can
be rewritten as

Λ
(
dt
) = log

∑2v−1
m=0 αt−1(m)β1t (m)

∑2v−1
m=0 αt−1(m)β0t (m)

= log

∑2v−1
m=0 αt−1

(
S1b(m)

)
β1t
(
S1b(m)

)

∑2v−1
m=0 αt−1

(
S0b(m)

)
β0t
(
S0b(m)

) .

(62)

Define

git(m) = αt−1
(
Sib(m)

)
,

hit(m) = βit
(
Sib(m)

)
.

(63)

Then the APP sequence Λ(dt) can be computed by

Λ
(
dt
) = log

∑2v−1
m=0 g

1
t (m)h1t (m)

∑2v−1
m=0 g

0
t (m)h0t (m)

. (64)

The two sequences git(m) and hit(m) admit the following

S. Wang and F. Patenaude 11

probabilistic interpretations:

git(m) = αt−1
(
Sib(m)

)

= Pr
{
St−1 = Sib(m); Yt−1

1

}
, 2 ≤ t ≤ τ,

hit(m) = βit
(
Sib(m)

)

= Pr
{
dt = i; Yτ

t | St−1 = Sib(m)
}
, 1 ≤ t ≤ τ.

(65)

From the third equation of (45), it follows that for 2 ≤ t ≤ τ,

git(m) = αt−1
(
Sib(m)

)
(by definition)

=
1∑

j=0

2v−1∑

m′=0
αt−2(m′)γj

(
Yt−1,m′, Sib(m)

)

=
1∑

j=0

2v−1∑

m′=0
αt−2

(
S
j
b(m

′)
)
γj
(
Yt−1, S

j
b(m

′), Sib(m)
)

=
1∑

j=0

2v−1∑

m′=0
g
j
t−1(m

′)γj
(
Yt−1, S

j
b(m

′), Sib(m)
)
,

(66)

and from the first and second equations of (45), we obtain

gi1(m) = 1, ifm = Sif (0),

gi1(m) = 0, ifm �= Sif (0).
(67)

Similarly, from the second equation of (46), it follows that
for 1 ≤ t ≤ τ,

hit(m) = βit
(
Sib(m)

)
(by definition)

=
1∑

j=0

2v−1∑

m′=0
β
j
t+1(m

′)γi
(
Yt , Sib(m),m′)

=
1∑

j=0

2v−1∑

m′=0
β
j
t+1

(
S
j
b(m

′)
)
γi
(
Yt, Sib(m), S

j
b(m

′)
)

=
1∑

j=0

2v−1∑

m′=0
h
j
t+1(m

′)γi
(
Yt , Sib(m), S

j
b(m

′)
)
,

(68)

and from the first equation of (46), it follows that

hiτ+1(m) = 1, i = 0, 1. (69)

Equations (64), (66), (67), (68), and (69) constitute a dual
version of the modified BCJR MAP algorithm of Pietrobon
and Barbulescu. For brevity, it is called the dual PB (DPB)
MAP algorithm (or simply called the DPB algorithm). The
duality that exists between the PB MAP algorithm and the
DPBMAP algorithm derives from the fact that the DPBMAP
algorithm is obtained by permuting nodes on the trellis dia-
gram of the systematic convolutional code from the DSBGT
MAP algorithm while the PB MAP algorithm is obtained in
a similar way from the SBGT MAP algorithm.

Using (19), (A.2), (A.4), and applying a mathematical in-
duction argument similar to the one used in the proof of

Proposition A.3 in the appendix, the DPB MAP algorithm
can be further simplified and reformulated as follows. The
APP sequence Λ(dt) is computed by (64), where git(m) are
computed by the forward recursions

gi1(m) = 1, m = Sif (0),

gi1(m) = 0, m �= Sif (0),

git(m) =
1∑

j=0
g
j
t−1
(
Sib(m)

)
Γt−1

(
j, S

j
b

(
Sib(m)

))
,

2 ≤ t ≤ τ, 0 ≤ m ≤ 2v − 1,

(70)

and hit(m) are computed by the backward recursions

hiτ+1(m) = 1, 0 ≤ m ≤ 2v − 1,

hit(m) =
(1∑

j=0
h
j
t+1

(
S
j
f (m)

)
)

Γt
(
i, Sib(m)

)
,

1 ≤ t ≤ τ, 0 ≤ m ≤ 2v − 1.

(71)

Note that Γt(j,m) is defined in (24).

7. COMPLEXITY AND INITIALIZATION ISSUES

7.1. Complexity comparisons in the linear domain

Dualities between the SBGT and DSBGT and between the PB
and DPB MAP algorithms immediately imply that the SBGT
and DSBGT MAP algorithms have identical computational
complexities and memory requirements and so do the PB
and DPB MAP algorithms. We next show that the SBGT and
PB MAP algorithms have identical computational complexi-
ties and memory requirements too. In fact, for i = 0, 1, from
the second equation of (61), we obtain

bit(m) =
1∑

j=0
b
j
t+1

(
Sif (m)

)
Γt+1

(
j, Sif (m)

)
,

1 ≤ t ≤ τ − 1, 0 ≤ m ≤ 2v − 1.

(72)

Since Sib(S
i
f (m)) = Sif (S

i
b(m)) = m, it follows from (72) that

for 1 ≤ t ≤ τ − 1,

b1−it (m) =
1∑

j=0
b
j
t+1

(
S1−if (m)

)
Γt+1

(
j, S1−if (m)

)

=
1∑

j=0
b
j
t+1

(
Sif
(
Sib
(
S1−if (m)

)))

× Γt+1
(
j, Sif

(
Sib
(
S1−if (m)

)))

=
1∑

j=0
b
j
t+1

(
Sif (m

′)
)
Γt+1

(
j, Sif (m

′)
)

= bit(m
′), m′ = Sib

(
S1−if (m)

)
.

(73)

12 EURASIP Journal on Applied Signal Processing

The identity (73) shows that for any given t, 1 ≤ t ≤ τ,
the sequence b0t (m), 0 ≤ m ≤ 2v − 1, can be obtained from
the sequence b1t (m′), 0 ≤ m′ ≤ 2v − 1, via the permutation
m′ = S1b(S

0
f (m)). Thus in the PB MAP algorithm, only one

of the two sequences b1t (m), b0t (m), 1 ≤ t ≤ τ, needs to be
computed in the backward recursion. Comparing (39), (40),
(60), (61), we see that the SBGT and PB MAP algorithms
have identical computational complexities and memory re-
quirements. It follows that the SBGT, DSBGT, PB, and DPB
MAP algorithms all have identical computational complex-
ities and memory requirements. To compare the BCJR and
the modified BCJRMAP algorithms, it suffices to analyze the
BCJR and the DSBGT. We will show next that the BCJR and
DSBGT MAP algorithms also have identical computational
complexities and memory requirements.

First, we note that the branch metrics Γt(i,m) are used in
both the forward and backward recursions for the BCJR and
DSBGT MAP algorithms. To minimize the computational
load, the branch metrics Γt(i,m) are stored and reused (see
[7]). Let us first compute the number of arithmetic opera-
tions required to decode a single bit for the BCJR. The branch
metric Γt(j,m), defined by (24), is computed by

Γt(j,m) = exp

(

j
(
La
(
dt
)
+ Lcr

(1)
t

)
+

n∑

p=2
Lcr

(p)
t Yp−1(j,m)

)

.

(74)

For each decoded bit, there are a total of B = min{2v+1, 2n}
different branchmetrics to be calculated, each requiring n−1
additions and a single exponentiation. Note that the scaling
operation by Lc is performed prior to turbo decoding and
therefore should be ignored here. To compute αt(m) in the
forward recursion (26), which is reproduced here,

αt(m) =
1∑

j=0
αt−1

(
S
j
b(m)

)
Γt
(
j, S

j
b(m)

)
, (75)

two multiplications and one addition are needed (assuming
that the B branch metrics are already computed and stored).
The branch metrics are reused in the backward recursion
(27), which is reproduced here,

βt(m) =
1∑

j=0
βt+1

(
S
j
f (m)

)
Γt+1(j,m), (76)

hence only twomultiplications and one addition are required
to compute a single βt(m). Finally, Λ(dt), defined in (28), is
computed by

Λ
(
dt
) = log

∑2v−1
m=0 αt−1(m)Γt(1,m)βt

(
S1f (m)

)

∑2v−1
m=0 αt−1(m)Γt(0,m)βt

(
S0f (m)

) . (77)

We note that the terms

Γt(0,m)βt
(
S0f (m)

)
, Γt(1,m)βt

(
S1f (m)

)
(78)

appear in both the computation of βt−1(m) and that of
Λt(dt). Therefore, βt−1(m) and Λ(dt) should be computed

at the same time, with the terms in (78) computed only
once. It follows that to compute Λ(dt), 2M + 1 multiplica-
tions and 2(M − 1) additions are required (the single di-
vision is considered equivalent to a multiplication, the sin-
gle natural logarithm operation is ignored, and M = 2v).
In total, to decode a single bit, there are B exponentiations,
1+ (n−1)B+2M +2(M−1) = (n−1)B+4M−1 additions,
and 2M +2M +2M +1 = 6M +1 multiplications. To decode
a bit, memory is required forM values of αt(m) and B values
of branch metrics Γt(j,m), resulting in a total of B +M units
of memory.

For the DSBGTMAP algorithm, we note that the identity

1∑

j=0
β
j
t+1

(
Sif (m)

) =
1∑

j=0
β
j
t+1

(
S1−if

(
S1−ib

(
Sif (m)

)))

=
1∑

j=0
β
j
t+1

(
S1−if (m′)

)
, m′ = S1−ib

(
Sif (m)

)

(79)

can be used to reduce the number of additions by half in the
computation of β0t (m) and β1t (m) (cf. (50)). An examination
of (42) and the recursions (49) and (50) then shows that to
decode a single bit, there are B exponentiations, 1+(n−1)B+
2M+2(M−1) = (n−1)B+4M−1 additions, and 2M+2M+
2M + 1 = 6M + 1 multiplications. Memory is required forM
values of αt(m) and B values of branch metrics Γt(j,m) or a
total of B +M units.

The preceding calculations show that indeed the BCJR
and DSBGT MAP algorithms have identical computational
complexities and memory requirements, and therefore the
BCJR and the four modified BCJR MAP algorithms all have
identical computational complexities and memory require-
ments.

7.2. Complexity comparisons in the log domain

In the log domain, exponentiation operations in the linear
domain disappear, multiplications are converted into addi-
tions, and additions in the recursions are converted into the
so-called E operation defined in [7, equation (21)] based on
the formula

ln
(
ex + ey

) = max(x, y) + ln
(
1 + e−|x−y|

)
, (80)

where the function ln(1 + e−|x−y|) is replaced by a lookup
table. Following the same analysis as in the previous sub-
section, it can be shown that the BCJR and the four modi-
fied BCJRMAP algorithms also have identical computational
complexities and memory requirements in the log domain.

7.3. Initialization of the backward recursion

In this paper, the BCJR and the four modified BCJR MAP
algorithms are formulated for a truncated or nonterminated
binary convolutional code. If the binary convolutional code
is terminated so that the final encoder state is the zero state,
then it can be shown that the βt(m) sequence for the BCJR

S. Wang and F. Patenaude 13

MAP algorithm can be initialized by setting βτ(0) = 1 and
βτ(m) = 0,m �= 0. To show why this is the case, let us look at
the backward recursion (15), which is reproduced here:

βt(m) =
2v−1∑

m′=0
βt+1(m′)γt+1(m,m′). (81)

Since the code is terminated at the zero state, for t = τ − 1,
from (18) and (19), we can see that the terms γt+1(m,m′) =
γτ(m,m′) in (81) are all zero except for γt+1(m, 0), which is
the only term that may be nonzero. This implies that the
βt(m) sequence can be initialized by setting βτ(0) = 1 and
resetting βτ(m) = 0, 1 ≤ m ≤ 2v − 1 =M − 1.

A similar argument applies to the SBGT, DSBGT, PB, and
DPB MAP algorithms as well. For a terminated binary con-
volutional code, we have the following initialization strate-
gies. For the backward recursion (40) in the SBGTMAP algo-
rithm, the sequence βt(m) is initialized by setting βτ(0) = 1
and βτ(m) = 0, m �= 0. For the backward recursions (50)
in the DSBGTMAP algorithm, the two sequences β0t (m) and
β1t (m) can be initialized by setting β0τ+1(0) = β1τ+1(0) = 1 and
β0τ+1(m) = β1τ+1(m) = 0,m �= 0. For the backward recursions
(61) in the PB MAP algorithm, the two sequences are ini-
tialized by setting b0τ(S

0
b(0)) = b1τ(S

1
b(0)) = 1, b0τ(m) = 0,

m �= S0b(0) and b1τ(m) = 0, m �= S1b(0). Finally, for the
backward recursions (71) in the DPB MAP algorithm, the
two sequences h0t (m) and h1t (m) are initialized by setting
h0τ+1(S

0
f (0)) = h1τ+1(S

1
f (0)) = 1, h0τ+1(m) = 0, m �= S0f (0),

and h1τ+1(m) = 0,m �= S1f (0).

8. SIMULATIONS

The BCJR and the four modified BCJR MAP algorithms for-
mulated in this paper are all mathematically equivalent and
should produce identical results in the linear domain. To
verify this, the rate 1/2 and rate 1/3 turbo codes defined in
the CDMA2000 standard were tested for the AWGN chan-
nel with the interleaver size selected to be 1146. At least, 500
bit errors were accumulated for each selected value of Eb/N0.
Under the same simulation conditions (same random num-
ber generators starting at the same seeds), it turns out that in-
deed the BCJR and the four modified BCJR MAP algorithms
all have identical BER (bit error rate) and FER (frame error
rate) performance. More specifically, they generate exactly
the same number of bit errors and exactly the same num-
ber of frame errors under identical simulation conditions (cf.
Figures 2 and 3).

The BCJR and the four modified BCJR MAP algorithms
are expected to have identical performance in the log domain
since they have identical performance in the linear domain.

9. CONCLUSIONS

In this paper, four different modified BCJR MAP algorithms
have been systematically derived from the BCJR MAP algo-
rithm via mathematical transformations. The simple con-
nections among these algorithms are thus established. It is
shown that the BCJR and the four modified BCJR MAP

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Eb/N0 (dB)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

BCJR
SBGT

DSBGT

PB

DPB

Rate 1/2

Rate 1/3

Figure 2: BER performance of the rate 1/2 and rate 1/3 turbo codes
in CDMA2000 using BCJR and the modified BCJRMAP algorithms
(interleaver size = 1146).

algorithms have identical computational complexities and
memory requirements. Computer simulations confirmed
that the BCJR and the four modified BCJR MAP algorithms
all have identical performance in an AWGN channel.

The BCJR and the modified BCJR MAP algorithms pre-
sented in this paper are formulated for a rate 1/n convolu-
tional code. It can be shown that these algorithms can all be
extended to a general rate k/n recursive systematic convolu-
tional code. These extensions will be treated elsewhere.

APPENDIX

Proposition A.1. Let

La
(
dt
) = log

Pr
{
dt = 1

}

Pr
{
dt = 0

} , 1 ≤ t ≤ τ. (A.1)

For i = 0, 1 and 1 ≤ t ≤ τ, there exists

Pr
{
dt = i

} = exp
(
iLa
(
dt
))

1 + expLa
(
dt
) . (A.2)

Proof. It follows from the definition (A.1) and the identity
Pr{dt = 0} + Pr{dt = 1} = 1 that

expLa
(
dt
) = Pr

{
dt = 1

}

Pr
{
dt = 0

} = 1
Pr
{
dt = 0

} − 1. (A.3)

This implies that Pr{dt = 0} = 1/(1 + expLa(dt)) and
Pr{dt = 1} = 1 − Pr{dt = 0} = expLa(dt)/(1 + expLa(dt)).
These two identities combined yield the identity (A.2).

14 EURASIP Journal on Applied Signal Processing

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Eb/N0 (dB)

10−5

10−4

10−3

10−2

10−1

100

FE
R

BCJR
SBGT
DSBGT

PB
DPB

Rate 1/2

Rate 1/3

Figure 3: FER performance of the rate 1/2 and rate 1/3 turbo codes
in CDMA2000 using BCJR and the modified BCJRMAP algorithms
(interleaver size = 1146).

Proposition A.2. Let Lc = 2/σ2. There exists a positive con-
stant μt > 0 such that for 1 ≤ t ≤ τ, 0 ≤ m′ ≤ 2v − 1, and
i = 0, 1,

Pr
{
Yt | dt = i; St−1 = m′}

= μt × exp

(

Lcr
(1)
t i +

n∑

p=2
Lcr

(p)
t Yp−1(i,m′)

)

,
(A.4)

where μt is independent of i andm′.

Proof. Let Cn = (1/
√
2πσ)n, then

Pr
{
Yt | dt = i; St−1 = m′}

= Cn exp
(
− 1

2σ2
(
r(1)t − (2i− 1)

)2
)

× exp
(
− 1

2σ2

n−1∑

p=1

(
r
(p+1)
t − (2Yp(i,m′)− 1

))2)

= Cn exp
(
− 1

2σ2

n∑

p=1

((
r
(p)
t

)2
+ 2r

(p)
t + 1

))

× exp
(
2
σ2

r(1)t i +
2
σ2

n∑

p=2
r
(p)
t Yp−1(i,m′)

)

= μt exp
(
Lcr

(1)
t i +

n∑

p=2
Lcr

(p)
t Yp−1(i,m′)

)
,

(A.5)

where

μt = Cn exp
(
− 1

2σ2

n∑

p=1

((
r
(p)
t

)2
+ 2r

(p)
t + 1

))
(A.6)

is a positive constant independent of the transmitted data bit
dt = i andm′ and Lc = 2/σ2.

Proposition A.3. Let αt(m), βt(m), and Λ(dt) be defined by
(26), (27), and (28), respectively. Let ηt > 0 (1 ≤ t ≤ τ) and
κt > 0 (1 ≤ t ≤ τ − 1) be two arbitrary sequences of positive
constants and define ᾱt(m), β̄t(m), and Λ̄(dt) by

ᾱ0(0) = 1,

ᾱ0(m) = 0, 1 ≤ m ≤ 2v − 1,

ᾱt(m) = ηt

1∑

j=0
ᾱt−1

(
S
j
b(m)

)
Γt
(
j, S

j
b(m)

)
,

1 ≤ t ≤ τ, 0 ≤ m ≤ 2v − 1,

(A.7)

β̄τ(m) = 1, 0 ≤ m ≤ 2v − 1,

β̄t(m) = κt

1∑

j=0
β̄t+1

(
S
j
f (m)

)
Γt+1(j,m),

1 ≤ t ≤ τ − 1, 0 ≤ m ≤ 2v − 1,

(A.8)

Λ̄
(
dt
) = log

∑
(m,m′)∈Bt,1

ᾱt−1(m)γt(m,m′)β̄t(m′)
∑

(m,m′)∈Bt,0
ᾱt−1(m)γt(m,m′)β̄t(m′)

. (A.9)

It holds that Λ(dt) = Λ̄(dt), 1 ≤ t ≤ τ.

Proof. We first show by mathematical induction that

ᾱt(m) = η0η1η2 · · ·ηtαt(m), 0 ≤ t ≤ τ, (A.10)

where η0 = 1. In fact, (A.10) holds for t = 0 since ᾱ0(m) =
α0(m) = η0α0(m), 0 ≤ m ≤ 2v − 1. Next, assume that the
identity (A.10) holds for some t < τ. From the third equation
of (A.7), it follows that

ᾱt+1(m) = ηt+1

1∑

j=0
ᾱt
(
S
j
b(m)

)
Γt+1

(
j, S

j
b(m)

)

= ηt+1

1∑

j=0
η0η1 · · ·ηtαt

(
S
j
b(m)

)
Γt+1

(
j, S

j
b(m)

)

= η0η1 · · ·ηtηt+1
1∑

j=0
αt
(
S
j
b(m)

)
Γt+1

(
j, S

j
b(m)

)

= η0η1 · · ·ηtηt+1αt+1(m).
(A.11)

Here we used the assumption that (A.10) holds for t and
the third identity of (26). This implies that (A.10) also holds
for t + 1. By the principle of mathematical induction, (A.10)
holds for 0 ≤ t ≤ τ. This completes the proof of (A.10). In

S. Wang and F. Patenaude 15

a completely analogous fashion, it can be shown by mathe-
matical induction that

β̄t(m) = κtκt+1 · · · κτβt(m), 1 ≤ t ≤ τ, (A.12)

where κτ = 1. Substituting (A.10) and (A.12) into (A.9), we
obtain, for 1 ≤ t ≤ τ,

Λ̄
(
dt
) = log

∑
(m,m′)∈Bt,1

ᾱt−1(m)γt(m,m′)β̄t(m′)
∑

(m,m′)∈Bt,0
ᾱt−1(m)γt(m,m′)β̄t(m′)

× log

∑
(m,m′)∈Bt,1

Ctαt−1(m)γt(m,m′)βt(m′)
∑

(m,m′)∈Bt,0
Ctαt−1(m)γt(m,m′)βt(m′)

= Λ
(
dt
)
,

(A.13)

where Ct = η0η1η2 · · ·ηt−1κtκt+1 · · · κτ . This completes the
proof.

Proposition A.4. For any (m′,m) ∈ Bt,i, γ1−i(Yt ,m′,m) =
0.

Proof. Since (m′,m) ∈ Bt,i, we havem = Sif (m
′). From (19),

it follows that

γ1−i
(
Yt ,m′,m

) = Pr
{
Yt | dt = 1− i; St−1 = m′}

× Pr
{
St = m | dt = 1− i; St−1 = m′}

× Pr
{
dt = 1− i

}

= Pr
{
Yt | dt = 1− i; St−1 = m′}

×Pr {St = Sif (m
′)|dt=1− i; St−1 = m′}

× Pr
{
dt = 1− i

} = 0,
(A.14)

since Pr{St = Sif (m
′) | dt = 1 − i; St−1 = m′} = 0. In other

words, starting from the state St−1 = m′ and encoding the bit
1 − i, the new state St of the systematic convolutional code
will be S1−if (m′), which is different from Sif (m

′).

ACKNOWLEDGMENTS

We thank the anonymous reviewers for comments which led
to much improvement of the presentation of this paper. We
are especially grateful to one of the reviewers who helped us
clarify the complexity issues. We also thank Dr. Mike Sab-
latash and Dr. John Lodge at the Communications Research
Centre (CRC) for reviewing an earlier version of this paper.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
limit error-correcting coding and decoding: turbo-codes. (1),”
in Proceedings of IEEE International Conference on Communi-
cations (ICC ’93), vol. 2, pp. 1064–1070, Geneva, Switzerland,
May 1993.

[2] C. Berrou and A. Glavieux, “Near optimum error correcting
coding and decoding: turbo-codes,” IEEE Transactions on Com-
munications, vol. 44, no. 10, pp. 1261–1271, 1996.

[3] S. Wang and F. Patenaude, “A simplified BGT MAP algo-
rithm and its dual,” in Proceedings of IEEE Pacific Rim Con-
ference on Communications, Computers and Signal Processing
(PACRIM ’03), vol. 2, pp. 954–959, Victoria, BC, Canada, Au-
gust 2003.

[4] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding
of linear codes for minimizing symbol error rate (Corresp.),”
IEEE Transactions on Information Theory, vol. 20, no. 2, pp.
284–287, 1974.

[5] S. S. Pietrobon and A. S. Barbulescu, “A simplification of the
modified Bahl decoding algorithm for systematic convolutional
codes,” in Proceedings of International Symposium on Informa-
tion Theory & Its Applications (ISITA ’94), vol. 2, pp. 1073–1077,
Sydney, Australia, November 1994.

[6] L. Kleinrock, Queuing Systems, Volume 1: Theory, John Wiley &
Sons, New York, NY, USA, 1975.

[7] S. S. Pietrobon, “Implementation and performance of a
turbo/MAP decoder,” International Journal of Satellite Commu-
nications, vol. 16, no. 1, pp. 23–46, 1998.

Sichun Wang obtained his B.S. and M.S.
degrees in mathematics from Nankai Uni-
versity, Tianjin, China, in 1983 and 1989,
respectively. He obtained his Ph.D. degree
in mathematics from McMaster University,
Hamilton, ON, Canada, in 1996. During
the academic year 1996–1997, he worked
at the Communications Research Labora-
tory of McMaster University as a Postdoc-
toral Fellow. Since September 1997, he has
been working in Ottawa, Canada. He was a Research Scientist at
Telexis Corporation and Intrinsix Canada, and a Research Consul-
tant for Calian Corporation. Currently, he works with Defence R &
D Canada – Ottawa (DRDC Ottawa). His more recent research has
focused on FFT filter-bank-based constant false alarm rate (CFAR)
detectors and forward error-correction codes.

François Patenaude received the B.A.S. de-
gree from the University of Sherbrooke, QC,
Canada, in 1986 and the M.A.S. and Ph.D.
degrees from the University of Ottawa, ON,
Canada, in 1990 and 1996, all in electri-
cal engineering. His Master and Doctorate
degree theses have been conducted in col-
laboration with the Mobile Satellite Group
of the Communications Research Centre
(CRC), Ottawa, Canada. In 1995, he joined
CRC to work on signal processing applications for communications
and for spectrum monitoring. His main research interests include

modulation and coding, detection and estimation in the spectrum
monitoring context, and real-time signal processing.

	Introduction
	The BCJR MAP Algorithm Revisited
	The SBGT MAP Algorithm
	The Dual SBGT (DSBGT) MAP Algorithm
	The PB MAP Algorithm Derived from the SBGT MAP Algorithm
	The Dual PB (DPB) MAP Algorithm
	Complexity and Initialization Issues
	Complexity comparisons in the linear domain
	Complexity comparisons in the log domain
	Initialization of the backward recursion

	Simulations
	Conclusions
	APPENDIX
	Acknowledgments
	REFERENCES

