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Abstract

In this work we present an expressive gait synthesis system based on hidden Markov models (HMMs), following
and modifying a procedure originally developed for speaking style adaptation, in speech synthesis. A large
database of neutral motion capture walk sequences was used to train an HMM of average walk. The model was
then used for automatic adaptation to a particular style of walk using only a small amount of training data from
the target style. The open source toolkit that we adapted for motion modeling also enabled us to take into
account the dynamics of the data and to model accurately the duration of each HMM state. We also address the
assessment issue and propose a procedure for qualitative user evaluation of the synthesized sequences. Our tests
show that the style of these sequences can easily be recognized and look natural to the evaluators.
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1 Introduction
Human motion is a very complex field of study. The com-
ponents of our behaviors, which are so natural to the
human eye, can hardly be separated into physiological pro-
cesses, the personal style of every human, or some kind of
additional “style” or “mood” that influences the final
motion, as presented in many works (see for instance [1]).
A given gesture will easily be identified by the human eye
as clumsy, elegant, heavy, or any other characteristic.
Unfortunately, automatically extracting that information is
a very difficult task, as stylistic variation is intrinsically
merged with the basic motion, the individuality of the sub-
ject and the time-variability of the gesture (two motions by
the same subject will never be exactly the same).
A broad field of applications can be found for human

motion synthesis. While its use is currently mostly limited
to the entertainment industry, with 3D movies, video
games, virtual agents, etc., other domains could benefit
from a realistic automatic motion synthesis, in the same
way as they already benefit from motion capture [2]. Med-
ical applications could use it for instance to control active
prostheses, or try to detect and understand the motion of
motor impaired individuals [3]. New applications in the
field of the animation of virtual characters in 3D could

also take advantage of more evolved motion synthesis, for
virtual agents interacting in real-time with the user, for 3D
animation movies, for video games, etc. [4]. A good
synthesizer could for instance enable non-professional ani-
mators to produce believable and controllable motion
sequences without animation experience nor expensive
motion capture equipment. For artistic applications,
motion analysis/synthesis could make it possible for an
actor or a dancer to interact in real-time on the scene with
a virtual character whose motions are correlated with
those of the human performer or with any other signal.
In the framework of virtual character animation, several

approaches are available to synthesize realistic human
motion. Among those, motion capture based approaches
have been driving a lot of interest in the last years, espe-
cially since motion capture becomes more affordable.
Numerous methods have been developed for using and re-
using motion capture data [5], a technology that transfers
the movements of humans into a numerical form usable
by computers. The main problems encountered with
motion capture data are its high dimensionality, the choice
of the parameterization, and the variability associated with
motion in general. All these factors make it hard to
retrieve, analyze, adapt, and modify motion patterns either
made “on request” or coming from an existing motion
database.
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Two approaches coexist for using motion capture data
for producing animations: the “template-based” and the
“model-based” approaches. In the “template-based”
approach, a large database of motion sequences is built
and algorithms are developed to address the common
data-mining issues (like retrieving the required motion
segments), edit these motion parts if needed, and blend
them together to produce new sequences [6]. Several pro-
blems are associated to the “template-based” approach,
that rely on a database which is queried for motion
segments. The database needs to be stored, which can be a
first issue, and to be large enough to contain all the
required motion capture segments. But increasing the
database size can be a problem for effective searching. In
the synthesis process, unrelated motion parts have to be
concatenated, and it is difficult to ensure the continuity of
the produced motion. Controllability is also an issue,
as there is no continuous modeling of styles, only distinct
independent examples that can display several
characteristics.
The “model-based” approach, sometimes also referred

to as the “machine learning” approach, consists in train-
ing models based on motion capture data. The models
can later be used to synthesize new motion sequences
without resorting to the database initially used for train-
ing [7-10]. Furthermore, style can be modeled as a para-
meter of the model, giving the user new possibilities for
the control of his synthesized segments, and for the
combination of styles not available in the original data.
This approach has been used for years in speech proces-
sing for example, first for recognition and more recently
for synthesis [11].
Our current work falls in the latter category, with the

use of model-based techniques, and more precisely of
hidden Markov models (HMMs) [12], for the modeling
and synthesis of human-like motion. We aim not only
to synthesize a plausible human walk but also to isolate
some kind of “style” component. Taking into account
such a “style” parameter will enable us to synthesize a
broad range of styles, and to have an open model where
new styles can always easily be added.
In this work, a general model of “neutral” walk is built

in a first step, by training a model over a large database.
The resulting neutral-style model can then be used as a
basis for the adaptive training of any style-specific
model using only a small amount of training data from
the target style. A new style-adapted model can thus be
obtained very easily each time it is required by capturing
only about a dozen steps of the desired walk style and
running the adaptive training. This technique, which
was originally developed for speaker adaptation in
speech synthesis (HTS toolkit) [11,13,14], has been
adapted to the motion synthesis problem in our work.
The main interest of this approach is that it makes it

possible to tackle the main problem of model-based
techniques, which is the large amount of data needed to
train each new model (corresponding to each different
walk style in our case). Thanks to this work, it is possi-
ble to train representative models for walk styles for
which the training of standard models failed because the
set of data available for each style was too small. This
method also opens interesting paths for style interpola-
tion or for adding style to plain walks.
The article is organized as follows. Section 2 makes a

review of HMM-based motion analysis/synthesis. The
training databases are then presented in Section 3.
Section 4 describes the preprocessing of the data.
Section 5 presents the HMM training and adaptation
procedure and its use for synthesis of new stylistic walk
sequences, along with some results. A qualitative user
evaluation is presented in Section 6. Section 7 concludes
this article by presenting perspectives and future works.

2 Related work
2.1 HMMs for motion synthesis
Various walk synthesis algorithms use statistical learning
techniques to automatically extract the underlying rules
of human motion, without any prior knowledge, directly
from training on 3D motion capture data. The resulting
statistical models can then be used for generating new
motion sequences automatically, using only some high-
level commands from the user. Such synthesized motions
are thus visually different from the training motions but
stochastically similar to them. A few studies use principal
component analysis (PCA), not for reducing the dimen-
sionality of the angle data, but as a way of modeling
motion units composed of a sequence of frames. Thanks
to their periodicity, walk cycles are especially well suited
for such an algorithm. This approach has been taken for
instance by Glardon et al. [8], Troje [15] and in our pre-
vious work [10]. But most work in this area use variations
of HMMs, Markov chains or other kinds of probabilistic
transitions between motions [9,16-18], in order to take
the high dynamic complexity of human movement into
account.
A HMM consists of a finite set of states, with transitions

among the states governed by a set of so-called transition
probabilities. In HMMs, each state is associated with an
outcome (more generally called observation) probability
distribution. Only this outcome is visible for an external
observer, not the state that produced it: at each time t, the
external observer sees one outcome, but does not know
which state produced it. HMMs are hence double stochas-
tic processes, as visible outcomes are determined by the
outcome probability distribution associated with the state,
and as the state changes at each time according the transi-
tion probabilities between states. In our work, the out-
come of the HMM are the frames of the motion. A basic
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left-to-right HMM with no skips is illustrated in Figure 1,
as a model in which the only possible state transitions at
each time are either to stay in the same state or to go to
the next state.
Motion has been studied with numerous variants of

HMMs, whether it was for analysis or synthesis purposes
[19]. In the following paragraphs, we will focus on the
studies related to the use of HMMs for motion synthesis,
and not just motion in general. In some cases, some kind
of “style” component is taken into account, but no style
parameter has yet been found that can be used to synthe-
size styles that are very different from the motions on
which the system was trained. Increasing the number of
styles represented by the system means increasing the
complexity of the model and in most cases re-training it
completely, with the additional issue that enough data
must be available for each style.
Tanco and Hilton [16] describe a model consisting of

two hierarchical levels. In the first level, PCA is used to
reduce the dimensionality of the data and is followed by a
K-means clustering of the poses space. The clusters–defin-
ing the boundaries of “motion segments” in the original
training data–are then used as states of a Markov chain
that represents the temporal behavior of the training data.
A discrete HMM is only used in the second level to relate
the states of the Markov chain to the original full examples
of motion sequences from the training database (the Mar-
kov chain states are the observations of the HMM and the
hidden states of the HMM are the motion examples). Dur-
ing synthesis, a sequence of Markov chain states is calcu-
lated given beginning and end poses defined by the user.
The second synthesis stage takes the generated state
sequence as an input and searches for the most likely
sequence of motion segments from the original training
data that could have generated that Markov chain state
sequence. There is thus no “true” HMM synthesis step, as
the database needs to be accessed each time a new motion
has to be built. This work is more related to the template-
database approach of motion capture animation, as it was
described in Section 1, than to the approach we describe
in the present article.
Wang et al. [17] go further in their motion modeling

by using a “time-striding HMM” (TSHMM), which is

also a two-layer model. In the first layer, an approxima-
tion of high-level (time-striding) statistical transitions is
calculated, with first order transition probabilities.
Those “high level” transitions correspond, for example,
to the transitions between two different behaviors like
walking and running. The high-level states from the
upper layer are modeled in the second layer by a set of
left-right HMMs. Those HMMs correspond to “atomical
movements”, i.e., motion segments maximally short,
while being long enough to enable the prediction of the
next pose. Synthesis is only based on the model without
needing to reuse any motion segment from the original
database.
Li et al. [18] also use the principle of motion decompo-

sition into sub-units connected to each other by transi-
tion probabilities, and model each sub-unit individually.
Their system, called “motion texture”, is a technique for
synthesizing complex human motions (like dancing for
instance) so that they are statistically similar to the origi-
nal motion capture data. The model is made of a set of
“motion textons”, and of their distribution, thereby char-
acterizing the stochastic and dynamic nature of motion
captures performed for the training. They define “motion
textons” as the repetitive patterns in complex human
motion (for instance: spinning, hopping or tiptoeing for
dance motion). Each motion texton is modeled by a lin-
ear dynamic system (LDS) [18]. The distribution of the
textons is modeled by a transition matrix which gives
probabilities for transiting from one texton to another. It
is thus possible to generate new animations and vary
their execution by modifying motion at the texton level,
or to synthesize a new choreography by varying the
distributions.

2.2 Motion style modeling and synthesis
An interesting approach is chosen by some researchers
who try to integrate a “style” variable into their HMM
models. It enables the model, during the synthesis step,
to vary not only the motion itself, but also the way the
motion is performed, i.e. the “style” of the motion.
Wang et al. [20], for instance, use a training algorithm

which integrates statistical optimization techniques with
the expectation-maximization (EM) learning steps. Their
method, called “SOMN-HMM” (which stands for “self-
organizing mixture networks” which are used to represent
mixture of Gaussians in the HMMs), makes it possible to
train basic HMMs as well as parametric HMMs contain-
ing a “style” parameter. In [21], output densities are repre-
sented by “stylized decomposable triangulated graphs”
(mix-SDTG) instead of SOMNs, and they also take into
account a style variable.
Among all the models enabling the generation of data

representing motion thanks to approximation functions,
the “style machine” developed by Matthew Brand [9] is

Figure 1 A simple three-states left-to-right HMM with no skip
(with aij representing transition probability between states i
and j).
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especially appealing. The major interest brought by this
method is that, thanks to its learning algorithm based on
the maximization of entropy, it enables to train HMMs
for which we do not know the structure in advance, and
it does it without having to proceed by successive
attempts in order to find the adequate structure. Further-
more, this method integrates a style variable that can
vary during the synthesis of a motion sequence. However,
in that work the “style” variable is not explicit and it is
thus not possible to control directly a given style, but
rather to change some intrinsic style-related parameters.
In an approach closely related to ours, Yamazaki et al.

[22] synthesize walk using a hidden semi-Markov model
(HSMM). The “style” variation they incorporate in their
model thanks to multiple regression is the quantitative
variations of speed and stride length. There are thus two
values that can be controlled but multiple regression is
not suited for expressivity modeling which can hardly be
quantified with a numerical value. The multiple regres-
sion method is trained once for all and it is not possible
to add a new “style characteristic” without having to
train the whole model again.
One of the problems with motion synthesis is that,

unlike for speech which is decomposed into sentences,
words, phonemes, etc., which are universal and can be
represented as a finite set of possibilities, there is no
widely accepted “dictionary” of basic motions. Each
research team uses its own terminology and the possibili-
ties are potentially infinite. There is thus no common
basis for comparison, and as there is no method to assess
the quality or the realism of a synthesized motion, the
comparison of methods proposed by each research group
is not straightforward. Most studies even lack qualitative
assessment of their results.

3 Training databases
In all model-based techniques, the first major issue is to
obtain enough representative training data. The quality
of models is highly dependent on the quality of the data

and how accurately these data describe the studied phe-
nomenon. Motion capture being the only solution to
obtain realistic 3D human motion data [2], it is the only
way to gather representative training data for statistical
modeling of human motion.
In this work we have used two databases recorded with

an inertial motion tracking system, the inertial gyroscopic
system (IGS-190) from Animazoo [23]. The IGS-190 is a
commercial motion capture suit that contains 18 inertial
sensors, which each consist of a three axis accelerometer,
a three axis gyroscope and a three axis magnetometer.
The data from those three sources are integrated and
fused directly in the inertial sensor boxes. Angles between
the body segments are thus provided straight from the
sensors; no mapping is necessary between tracked 3D
positions of markers and joint angles, unlike in optical
motion capture systems.
Most studies use optical motion capture systems,

which usually induce space limitations and where walk
is thus recorded on a treadmill. In contrast, the inertial
suit IGS-190 does not imply any kind of space limita-
tion. The recorded subject can thus move freely in an
open space area and walk can be recorded in a more
natural way. This kind of inertial suit is thus especially
interesting for the study of expressive walk, as it gives
more freedom to the subject who can follow non-
straight trajectories and is not constrained to a given
constant speed like he would be on a treadmill.
In our databases, like in all motion capture systems,

the human body structure is approximated by a kine-
matic tree of joints modeled as points separated by seg-
ments of known constant lengths (see the skeletons in
Figure 2). The starting point of that kinematic chain,
also called the “root” of the skeleton, is the middle of
the hips, at the bottom of the spine. The hierarchy of
the skeleton is the same for all our subjects and record-
ings and contains 18 articulations. This hierarchy and
the limb lengths corresponding to the recorded subject
are defined for each person prior to the first recording

Figure 2 Four example postures taken from the motion capture database (sad, afraid, drunk and decided walks).
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and are constant across different motion recordings by
the same subject.
There is no 3D position tracking system in the IGS suit,

and the absolute position of the subject is calculated by
the software given a known initial position, using the
length of the skeleton segments from the feet to the hip,
the angles recorded between those segments for each
frame, and always considering that the lowest point of
the skeleton is in contact with the ground.
Our two databases, respectively called “eNTERFACE’08

3D” and “Mockey”, were recorded with the same motion
capture suit but with different aims, subjects and settings.
The eNTERFACE’08 3D database is described in details
in [24]. This first database contains 17 walk sequences
for 41 subjects. Among these, 12 sequences correspond,
for each subject, to three sequences of straight walk over
approximately seven meters for four different speed
instructions. Those four instructions were “free”, slow,
middle and fast walks. In the “free” walk, subjects were
invited to walk at their usual comfort speed. In the pre-
sent work, the three free walk sequences of the 41 sub-
jects were used to train our average “neutral” walk
model. In that database, the motion was captured at a
frame rate of 60 frames per second (fps).
The Mockey database, the second database used in this

work, aims to study the “expressivity” of walk [10]. Various
walks were performed by the same actor walking on a
scene. He was given instructions about the “walking style”
he had to act before each walk sequence recording. The
11 different acted styles were the following: proud,
decided, sad, topmodel, drunk, cool, afraid, tiptoeing,
heavy, in a hurry, manly. These 11 styles were arbitrarily
chosen as they all have a recognizable influence on walk,
as illustrated in Figure 2. Our “style” component consists
thus in exaggerated variations that can be far from plain
walk. In this second database, motion was recorded at a
frame rate of 30 fps. Depending on the style of walk
performed and its corresponding step length, a different
number of walk cycles was recorded for each style. The 11
different styles and their corresponding number of left and
right steps are presented in Table 1.

4 Data preprocessing
In the data format we use, three values per frame give the
absolute 3D position (XYZ cartesian coordinates) of the
root of the skeleton while the 54 other values represent
the 3D angles of the 18 joints of the skeleton. The three
values corresponding to the 3D position were discarded as
they can be recalculated later using the angles, information
about the foot contact with the ground, and the fixed leg
segment lengths. The directions of all walk sequences
from both databases were then aligned before further pro-
cessing. The walk sequences were also manually segmen-
ted into left and right steps. The boundaries of the steps

were arbitrarily defined as the moment the heel touches
the ground.
We chose to model the rotations of the 18 captured

joints rather than the 3D cartesian coordinates of these
joints in order to ensure that the fixed limb length con-
straints were respected in the synthesized motion: as only
rotations are applied to the fixed limb length skeleton
definition presented in Section 3, there will be no length
deformation in the skeleton after synthesis. This would
not be the case with joint cartesian coordinates as noth-
ing would insure that the distance between two succes-
sive joints of the skeleton hierarchy remains constant,
unless that constraint is explicitly added in the synthesis
algorithm.
Once we had chosen to model rotations, the choice of

the rotation parameterization was not straightforward.
Lots of problems are associated with the different 3D rota-
tion representations that exist, and none of them is ideal
in all situations. Rotation matrices, Euler angles, quater-
nions, axis/angle representation and exponential maps are
the most common rotation parameterizations (see for
instance [25] for a more detailed presentation of those five
representations), but the choice of the parameterization
will always depend on the application of interest.
Our data was originally represented by Euler angles, in

which each 3D rotation is splitted into three simpler suc-
cessive rotations around the axes of the local coordinate
system associated to the object (X, Y and Z axis). That
representation is not well suited for our purpose as,
among other issues, there is not always a single represen-
tation of each 3D rotation but rather several possible
angle combinations that lead to the same rotation. More
information about singularities in the Euler angle para-
meterization can be found in [25,26].
In this work, our angles were converted into the expo-

nential map parameterization which is locally linear and

Table 1 Mockey database walk styles and corresponding
number of steps recorded

Nbr steps

Walk Style

Left Right

1 Proud 26 24

2 Decided 18 15

3 Sad 35 33

4 Topmodel 28 27

5 Drunk 40 40

6 Cool 25 25

7 Afraid 19 18

8 Tiptoeing 18 20

9 Heavy 24 25

10 In a hurry 20 21

11 Manly 19 20
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where singularities can be avoided [26,27]. Exponential
maps represent any 3D rotation by a single rotation
about an axis. In this parameterization, each vector �r in
ℝ3 is associated to a single rotation:

�r = θ .�u, (1)

where the vector �r is the three-component exponential
map, �u is the unit-length 3D vector corresponding to the
axis of rotation, and θ is the rotation angle around the
axis. The direction of �r defines the rotation axis �u, and
the magnitude (θ) of the vector �r is the scalar value of
the angle to rotate by. This relationship is completed by
associating the zero vector to the identity rotation, mak-
ing the relationship continuous. For in-depth analysis of
the advantages and drawbacks of exponential maps,
please refer to [26].
The pose of the skeleton at each frame of the walk

cycle is thus described by a vector with a fixed number
of variables: 18 tridimensional joint angles, which gives
a vector of 54 values per frame to describe the motion.

5 Average model and style adaptation
5.1 Method
As explained before, our objective was to synthesize sty-
listic walks with few data, starting from a robust neutral
walk modeling. Our approach is to start from a proce-
dure originally developed for speaker adaptation in
speech synthesis and to adapt it to our motion problem.
Both speech and motion fields present strong similari-
ties, like inter-subject variability, stylistic or temporal
variations. They are also very different; for instance,
motion data do not need feature extraction or temporal
windowing, have a much higher dimensionality, and
cannot be represented by a finite number of phonemes.
This led us to reduce our study to walk synthesis alone,
as opposed to motion synthesis in general. In this para-
graph, we will briefly explain the different stages of the
HMM-based motion synthesis as we used it, based on
the HTS framework [11].
5.1.1 Parameter analysis, model structure and labels
Let us assume that our training data C consists in T rea-
lizations of our 54-dimensional parameter vector ct: C =
[c1, c2, ..., ct, ..., cT]. As presented in Section 4, our fea-
ture vector (ct) consists in the 54 exponential map para-
meters describing the skeleton pose at frame t, so we
have ct = [ct(1), ct(2),..., ct(54)]

⊤. Following the procedure
proposed in the HTS framework, the dynamics of the
data was taken into account in our models by concate-
nating ct with a vector containing the first and second
time derivatives of our parameters (for both neutral and
stylistic model training) [28]. The observation vector ot
we want to model thus consists of the static feature vec-
tor ct plus the corresponding dynamic feature vectors

Δct, and Δ2ct, which makes ot a 162-dimensional para-
meter vector. Our observation vector ot can thus be

expressed as ot =
[
c�t ,�c�t ,�

2c�t
]�, where the derivatives

were calculated as follows:

�ct =
1
2

(ct+1 − ct−1) , (2)

�2ct =
1
4

(
ct+2 − 2ct + ct−2

)
. (3)

Taking into account the T observation vectors, our
whole training data can be expressed as O = i[o1, o2,...,
ot,..., oT]. Considering matrix W representing the coeffi-
cients that link the c, Δc, and Δ2c as expressed in Equa-
tions (2) and (3), the relation between the observation
matrix O and the static parameter matrix C is:

O = WC. (4)

In HTS, the time d spent in each state of the HMM is
explicitly modeled in duration probability density func-
tions thanks to HSMM [29], a variation of HMMs which
takes state duration modeling into account. The schematic
representation of an HSMM is represented in Figure 3
and can be compared to the classical HMM of Figure 1.
This prevents the probability density of the duration d
from being modeled as a decaying exponential like in clas-
sical HMMs, as this is inaccurate for most real life pro-
blems, like motions in our case. State duration densities
were modeled with a multidimensional Gaussian distribu-
tion for each HMM. The dimension of these distributions
is equal to the number of states in the HMM, set to five in
our work, with each dimension corresponding to one
HMM state, as explained in [29].
During training, contextual factors related to the posi-

tion of the step in the whole walk sequence were taken
into account, thereby multiplying the number of models
to train. However, all model parameters can not be esti-
mated with sufficient accuracy if we only have limited
training data. Furthermore, all the possible combinations
of contextual factors will not always be present in the
training database and unseen models have to be taken
into account before the synthesis step. To overcome this
problem, both parameter and duration models can be
clustered using decision trees. The decision tree is a

Figure 3 A three-states HSMM (with pi(d) representing the
density probability of the duration of state i).
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binary tree, and in each of its nodes, a question splits
contextual models into two groups. All possible contex-
tual combinations can be found by traversing the trees.
Once the decision tree is constructed, unseen contexts
can be taken into account and leaves containing little or
very similar data can be merged (for more information
on how trees are built and used, please refer to [30]).
5.1.2 Average model training
Using the above HSMM model taking both static and
dynamic parameters into account, we train an average
walk model on a large set of walkers. This average
model will be used in the next step of our procedure as
the initial model from which the adaptation will start. In
our work, the step boundaries of our segmented data-
base are only used to initialize the parameters of the
average walk model (they are not used in the adaptation
or synthesis stages). A “walker adaptive training” (WAT)
algorithm was used during the training stage of our
average model. This WAT training reduces the influ-
ence of walk differences among the 41 walkers of our
training data on the parameters of the final average
model. More information on the WAT training of the
average model can be found in [31], where it is referred
to as “SAT” for “speaker adaptive training”.
5.1.3 Style adaptive training of HSMM models
In the previous paragraph, the general HSMM training
scheme has been presented. In some cases, for instance
when not enough data is available to perform a conven-
tional training, an adaptive training procedure can be
conducted. This adaptive training modifies a general
HSMM model, trained with sufficient data, to fit a parti-
cular style using only a small amount of data from this
target style. Training is performed in this article with
constrained structural maximum a posteriori linear
regression (CSMAPLR) transformation [32,33]. This
transformation is called “linear regression” because the
calculated transformation of the HSMM parameters can
only be linear. The adapted means μ̂(m̂) and variance
∑̂

(σ̂ 2) of the state output (state duration) distributions

can be expressed, given the linear transformation Ao

(Ad) and the bias bo (bd), under the following form:

μ̂ = Aoμ − bo, �̂ = Ao�A�
o
, (5)

m̂ = Adm − bd, σ̂ 2 = Adσ
2A�

d . (6)

The term “constrained” refers to the fact that the lin-
ear transformations applied to the means and the linear
transformation applied to the variances of the average
model (both for durations and observation parameters)
are required to be the same, other than the bias. A
detailed explanation of the CSMAPLR transformation
and how it can be calculated can be found in [32] and

[33]. This CSMAPLR transformation is implemented
within the HTS framework.
The last step of the adaptation training procedure

consists in a mximum a posteriori (MAP) [13] adapta-
tion that further transforms the models already linearly
adapted by CSMAPLR, modifying the estimation of the
distributions having enough training samples, as
explained in [32].
5.1.4 HSMM synthesis
In HSMM-based synthesis, the synthesis stage consists
in an algorithm which directly generates the optimal
parameter sequence from the HSMM in the maximum-
likelihood sense. In our HSMMs, the probability density
function of the observations was modeled by one Gaus-
sian distribution per state. Given a HSMM (l) and the
sequence of steps we want to generate, the HSMM
synthesis consists in finding the parameter sequence
O∗ = [o�

1 , o
�
2 , . . . , o

�
T ]

� with maximum probability given
the HSMM model l. The problem can thus be mathe-
matically expressed as follows:

O∗ = arg max
O

P(O|λ). (7)

Unfortunately, there is no known algorithm to analyti-
cally solve this equation. We can thus only find approxi-
mated solutions by using the most likely state sequence.

Since P(O|λ) =
∑

all q

P(O, q|λ), where q is one sequence

of states from the set of all possible state sequences cor-
responding to the walk we want to generate, the pro-
blem can be approximated by:

O∗ � argmax
O

(max
q

P(O|q,λ)P(q|λ)). (8)

The initial problem of finding the optimal sequence of
observations O* given the HSMM l and the desired
sequence of synthesized walk steps can thus be splitted
into two optimization problems:
(1) Find the optimal sequence of states q* given the

HSMM l and the desired sequence of synthesized walk
steps:

q∗ = argmax
q

P(q|λ). (9)

(2) Find the optimal sequence of parameters O given
the previously determined optimal sequence of states q*
and the HSMM l:

O∗ = argmax
O

P(O|q∗,λ). (10)

The optimal sequence of states q* must first be esti-
mated, according to Equation (9). Knowing the state
duration densities thanks to the HSMM modeling, the
optimal sequence q* according to Equation (9) can be
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determined [29]. Once the optimal state sequence has
been calculated, the optimal sequence of parameters can
be determined from Equation (10).
When the constraints between static and dynamic fea-

tures expressed in Equations (2) and (3) are added to
the optimization problem, maximizing P(O | q*, l) with
respect to O (Equation (10)) becomes equivalent to
maximizing it with respect to C:

C∗ argmax
C

P(WC|q∗,λ), (11)

as O = WC (Equation (4)). In the HTS framework and
as explained in details in [28], this problem can be
solved using the Cholesky decomposition. The algorithm
we just described can thus generate a parameter trajec-
tory of static features that maximizes the likelihood of
the parameter sequence containing both static and cor-
responding dynamic parameters given an HSMM model.
However, the generated parameter sequence is often

excessively smoothed due to statistical processing. The
sharp variations that appear in the motion and account for
a great deal of the style variation tend to disappear and the
synthesized walks loose a great deal of their naturalness. In
[34], Toda and Tokuda present an algorithm to reduce
that effect, by taking into account one of the characteris-
tics of the parameter sequence that was removed statisti-
cally: the global variance of the data. The global variance
(gυ(C)) of the static features ct over a time sequence of T
frames is calculated by:

c̄(dim) =
1
54

T∑

t=1

(
ct(dim)

)
, (12)

υ(dim) =
1
54

T∑

t=1

(
ct(dim) − c̄(dim)

)2, (13)

gυ(C) =
[
υ(1),υ(2), . . . ,υ(dim), . . . υ (54)

]
. (14)

The method proposed in [34] and implemented in the
HTS framework considers not only the HMM likelihood
for the static and dynamic feature vectors, but also the
likelihood of the global variance. The probability to
maximize in Equation (7) becomes:

P(O|λ,λgυ) =
∑

all q

P(O, q|λ)ωP(gυ(c)|λgυ), (15)

with lυ a single Gaussian distribution representing the
global variance of the data υ(c) by a mean vector and a
covariance matrix, and ω a constant determining the
weight between the two likelihoods. Taking into account
the global variance of the data enabled us to avoid over-
smoothed synthesized walks.

Once our adapted model is built, we can synthesize as
many stylistic walk sequences as we want using the
same synthesis procedure as described here. The model
gives us joint angles and the displacement of the skele-
ton can be computed using our knowledge of the limb
lengths and the step in which we are (which defines
which foot is in contact with the ground).

5.2 Results
5.2.1 Neutral walk modeling
For our HMM training and synthesis, we followed the
method explained in Section 5.1 and adapted the functions
originally implemented for speech within the HMM-based
speech synthesis system (HTS) to our procedure. The
implementation of the HTS toolkit (version 2.1) that we
used in this work is publicly available on the HTS website
[11].
The three sequences of “free” walk of the 41 subjects of

the eNTERFACE’08 3D database were used to train our
average neutral walk model, which consisted of five-states
left-to-right HSMM with no skip for both steps (right
and left). The database contains 669 observation
sequences for “right step” and 656 observation sequences
for “left step”. We made the contextual distinction
between five positions in the walk sequence for each
step: the first, second, last, last-but-one steps of the
sequence, and all the other steps. The training began
thus with ten models to train (five for each step).
During the training phase, some of the ten initial mod-

els were automatically tied by the context-based tree
clustering and only six HMMs remained for the whole
walk modeling in the average model: two models for the
first step of a walk sequence, two for steps inside a
sequence, and two for the last step of a sequence (one
model for the right step and one for the left step each
time).
5.2.2 Style walk modeling
Adaptive training is performed with constrained maxi-
mum likelihood linear regression (CMLLR) transforma-
tion [33] of our previously trained average neutral walk
HSMM model. For each one of the 11 expressive walks
of our Mockey database, a separate adaptive training
was performed using all of the data available for the tar-
get style. The number of observation sequences for each
of the stylized walks are given in Table 1. So, for each
style, we obtained separate contextual (initial, final and
“inside a sequence”) models for the right and left steps.
5.2.3 Synthesis of new walk sequences
Each new walk sequence is synthesized by first concate-
nating HMMs corresponding to the desired succession
of steps. The whole parameter sequence is then calcu-
lated from that complete sequence of models, taking
into account the dynamics of the synthesized parameters
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thanks to the first and second derivatives of the para-
meters. Therefore, the smoothness of the transitions
between the successive steps of the walk sequence is
ensured.
The parameters generated by the model are only the

angles between the body segments, hence no overall dis-
placement of the character is synthesized by the HMMs.
But using our knowledge of the boundaries of each
synthesized step and the height of each foot (for both
heel and toe) given by the known angles and length of
the limb parts, we can determine which part of which
foot is in contact with the ground. Starting from that
fixed 3D point, we can compute the overall displace-
ment of the whole body and ensure at the same time
that no foot sliding occurs. Figure 4 illustrates two
examples of synthesized walks (sad and topmodel
walks). The style difference is already visible in these
poses, and the duration difference is also illustrated as
more poses (and thus more time) are needed to com-
plete the sad walk step than the topmodel walk step.
Our average model was trained with data recorded at a

frame rate of 60fps and adapted in the second phase to
data captured at a rate of 30 fps, but that difference was
not an issue as the durations were adapted automatically
during the average-to-style model adaptation. The
synthesized walks, coming from models adapted to the
Mockey style data, corresponded to a frame rate of 30fps.

6 Qualitative user evaluation
6.1 Methodology
A recurrent problem with motion data synthesis is the
difficulty to evaluate the produced motion sequences.
Most studies only present their method without giving

the reader information about the quality of the results,
or just give a link to an example of synthesized motion.
In this article, we propose three different subjective

tests that enabled us to assess the quality of the synth-
esis results. The basic set of the tested videos consisted
in 44 walk sequences: one original walk sequence for
each of the 11 styles, the same sequences from which
the displacement of the root of the skeleton was
removed, one sequence of synthesized walk for each of
the 11 styles without adding the overall displacement
(called “static” in the next sections), and the same
synthesized sequences for which the absolute position of
the root was calculated as explained in Section 5.1.4
(called “displacement” in the next sections). Two videos
of motion synthesized with the average walk model
were added (with and without displacement), which
makes 46 videos in total. In the video sequences, motion
was performed by a basic blue stick-figure character as
shown in Figure 2.
Participants accessed to the evaluation tests through a

web browser. They had to start the video themselves by
clicking on it, and could watch it as many times as they
wanted. If they did not complete the test thoroughly,
they could come back later, but the participant’s results
were saved even if the three tests were not completely
finished. Video sequences lasted between 3 and 17 s.
About a 100 naive evaluators took part in the evalua-

tion. The three tests and their respective results are pre-
sented in Sections 6.2, 6.3, and 6.4. For each of the
three tests, every evaluator was presented a set of ten
videos or couples of videos. Those videos were ran-
domly picked by the evaluation program, and were thus
different for each evaluator.

Figure 4 Left step of synthesized walk for sad (up) and topmodel (down) walks. Synthesized poses are displayed every 0.1 second.
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6.2 Naturalness evaluation
In the first test, the evaluator was presented one random
video at a time. He was asked to choose among three
propositions: the stylistic walk in the video seems “real”,
“synthetic”, or “I don’t know”. The aim of the test was
to determine if there was a significant difference in the
way the naturalness of the original and the synthesized
walks were perceived.
In a first trial, this test was presented to the users in an

odd manner and several users reported that they were
confused and did not understand the question. The user
was asked if the walk was “natural” or “unnatural”, which
lead most people to perceive nearly all the walks, both ori-
ginal and synthetic, as “unnatural” because of the nature
of the data presented: exaggerated walk styles performed
by an actor. We reformulated thus the question and only
kept the results obtained after that change, which explains
why only 500 sequences were evaluated in this first test.
Five-hundred sequences of walk were evaluated in total

(246 original sequences and 254 synthetic sequences).
The results of the test are presented in Figure 5. 65.45%
of the original walks and 50.39% of the synthetic walks
were labeled as “real walks”, and the user could not
decide for 2.44% of the original walks and 6.69% of the
synthetic walks. We can thus say that even if the original
walks seem a little bit more natural to the evaluators, our
synthesized walks looked very natural too, with more
than half of the synthetic sequences presented to the eva-
luators identified as “originals”, 15% less than the real

original walks. We also verified informally that the degree
of unnaturalness between the original and synthesized
motions labeled as “unnatural” by the evaluators was not
significantly different. This was done a posteriori, by
showing five people both original and synthesized videos
that had the more often been identified as “unnatural”
during our extensive user evaluation, and asking them if
some of the videos were significantly less natural than
others.

6.3 Style recognition evaluation
In the second test, the evaluators were again presented
one video at a time. They were asked to chose between 13
different style possibilities: the 11 styles, plus “average
walk” or “I don’t know”. A total number of 922 evaluations
of videos taken randomly from the set of 46 possible
videos were performed.
The recognition rate was of 45.9% for original walks and

38.93% for synthetic walks. Less than half of the styles
were properly recognized but this results is easily
explained by the fact that no examples of the different
possible styles were presented to the users before letting
them choose between the 13 proposed answers, and some
of the styles were thus subject to the evaluator’s interpre-
tation which did not always correspond to the actor’s
interpretation. Furthermore, some of the styles were very
close (for instance “proud” was more often recognized as
“cool” or “manly”) and were easily confused for one
another. The confusion matrix of the classification by the
evaluators is presented in Table 2. The confusion matrix
shows that when a walk style is wrongly identified as
another style, that association is the same for original and
synthetic walk and consequently depends more on style
interpretation than on the quality of the synthesis. In
order to insure that the low style recognition results were
not caused by the motion representation (stick figure), we
displayed the original motion data on a more realistic 3D
body character and asked five subjects to recognize the
displayed style in some examples with stick figure and
some examples with 3D body character. The 3D body
representation did not improve recognition, which com-
forted us in our analysis that the poor recognition style
was due to the variable appreciations of our eleven pro-
posed styles by users and by the actor. Another factor
which seemed to influence the results is that in the videos
with root displacement, the character displayed was smal-
ler on the screen and the details of the motion were harder
to distinguish. Despite these facts, the classification rate is
much higher than mere chance: with 13 possible choices
for style, a random classification would have given a recog-
nition rate of 7.69%.
The percentages of correctly classified videos for both

original/synthetic and with/without root displacement
are presented in Table 3. The results correspond to what
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Figure 5 Results of the naturalness test comparing the
perception (real, synthetic or “I don’t know”) of original and
synthesized walk sequences.
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could be expected. Original motion were slightly better
recognized than synthesized motions. Furthermore, since
the displacement of the root enables the evaluator to
have a better global view of the scene and of the succes-
sion of steps, adding the displacement improves the
results for original motions but worsens them for synthe-
sized motions. The values of all style recognition rates for
both original and synthetic motions are presented in Fig-
ure 6. We can see that for some styles, synthesis wor-
sened the recognition rate (for instance “tiptoe”, walk
number 8). For others, the style was better recognized in
synthesized sequences than in the original ones (for
instance the “cool” walk, number 6). The Pearson corre-
lation coefficient between the recognition score of the
original motions versus the synthesized motion for each

of the 11 styles is 0.8849. This value shows that the
recognition rates per style for original motions versus
synthetic motions are tightly linked. If one style is well
recognized in the original motions, it will be well recog-
nized in the synthesized motions.
As Bernhardt and Robinson in [1], we can calculate a

more objective measure of the recognition efficiency h
by normalizing the achieved recognition rate (or sensi-
tivity) by the recognition rate given by a random classifi-
cation (sensitivity expected by chance):

η =
Achieved sensitivity

Sensitivity expected by chance
. (16)

The efficiency of the users’ recognition is thus equal
to horig = 47.6/7.69 = 6.19 for original walk sequences
and to horig = 37.15/7.69 = 4.83 for synthesized walk
sequences. These values are both higher than the
human recognition efficiencies cited in [1] (h = 3.72 and
h = 3.55 for emotional state classification based on ori-
ginal knocking motions in [35] (four emotions, point-
light display) and [36] (five emotions, full video)),

Table 2 Confusion matrix of style recognition test for both original walk sequences (first part of the table) and
synthesized sequences (second part of the table)

Evaluators classification (%)

Proud Decided Sad Topmodel Drunk Cool Afraid Tiptoe Heavy Hurry Manly Average ?

Original

(actual style)

Proud 10 0 3 3 0 27 0 0 3 0 23 27 3

Decided 3 37 3 0 0 5 3 0 3 26 13 5 2

Sad 2 0 68 0 9 2 4.6 0 7 0 2.3 5 0

Topmodel 14 0 0 58 3 11 0 0 0 0 3 11 0

Drunk 0 0 0 0 91 9 0 0 0 0 0 0 0

Cool 9 15 0 4 0 20 0 0 0 0 6 37 6

Afraid 0 0 0 0 6 0 49 36 3 0 0 0 6

Tiptoe 0 0 0 0 0 0 11 71 0 11 0 0 7

Heavy 0 0 15 0 34 15 7 0 17 0 10 0 2

Hurry 0 39 0 10 0 5 0 0 0 19.5 5 15 7

Manly 0 0 6 3 0 19 0 0 11 0 47 6 8

Synthesized

(actual style)

Proud 15 0 0 6 0 23 0 0 6 0 10 37 2

Decided 2 42 2 0 0 0 2 0 9 40 2 0 0

Sad 0 3 71 0 5 0 0 0 13 0 3 3 3

Topmodel 11 0 0 51 17 17 0 0 0 0 2 0 2

Drunk 7 20 2 2 72 5 0 0 2 0 0 0 9

Cool 15 3 0 3 0 38 0 0 0 0 24 12 6

Afraid 0 0 0 0 2 0 44 40 7 0 0 0 7

Tiptoe 0 4 0 8 0 0 15 42 0 15 0 4 12

Heavy 5 2 10 5 7 17 2 0 19 0 19 2 12

Hurry 2 30 0 16 0 5 0 0 0 23 5 18 2

Manly 7 2 11 0 2 11 0 0 9 0 52 2 2

The recognition rate is expressed in percents of the actual style sequences presented to the evaluators, rounded to the unit

Table 3 Percentage of correctly classified walk sequences
for the style recognition test

Original (%) Synthesized (%)

Static 44.20 40.71

Displacement 47.60 37.15
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indicating that the style component was accurately per-
ceived in both our original and synthesized sequences.

6.4 Original versus synthesized comparison
In our last test, participants were presented two videos
at the same time, the original and synthesized videos
corresponding to the same style (either both static or

both with displacement). A screenshot of this third test
is presented in Figure 7. The order of the videos was
randomly determined by the program. Evaluators were
asked to choose between five possible qualifications for
the level of resemblance between the two videos: “iden-
tical”, “slightly different”, “different”, “very different” and
“nothing in common”. We gave numerical values to
these subjective opinions, from four for “identical” to
zero for “nothing in common”. The best possible score
is thus four if all comparisons are found identical and
zero if they are all found has having “nothing in com-
mon”. Eight-hundred and sixty-five comparison tests
were performed, leading to a very good global score of
3.15. The detail of the number of answers for each of
the five categories is presented in Figure 8. We can see
that the most chosen resemblance is “identical” and that
the number decreases while the perceived difference
increases. These results show that our synthesized walk
sequences look very similar to the original training data.

7 Conclusion
Thanks to the method presented in this article, we were
able to build HMMs of our 11 different stylized walks,
and to use these models to synthesize new walk
sequences. Our method produces very convincing
synthesized walk sequences where the styles characteris-
tics can be recognized (some examples of synthesized
motion sequences can be found in the “Additional file
1“ (Video-StylisticGaitSynthesis.mov) or on the author’s
webpage [37]), even if the walk styles in our stylistic

Figure 7 Screenshot of the interface of the third evaluation test: comparison of original versus synthesized walk.
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database were exaggerated and thus extremely different
from each other unlike most motion style studies which
concentrate on smaller variations.
We also proposed a setup for a subjective evaluation of

the synthesis results, which showed that the synthesized
walks were close to the original training data and also
pointed out some of the weaknesses of the synthesis, indi-
cating directions for future work. The recognition test
showed for instance that adding the displacement to the
motion improved the recognition rate for original motions
but had the opposite effect on synthesized sequences. We
think that this is due to the inter-step variation which is
lower in the synthesized sequences than in the original
motion, and that should be further improved.
Future work will include further analyses of the eva-

luation tests that can be used to assess the naturalness
of the produced motions, and analysis of the use of the
style interpolation/extrapolation using the trained mod-
els. One could also study how several parameters influ-
ence the perceived results, like the variables of the
HMM (number of states for instance), the influence of
the number of stylistic steps in the adaptation training
phase, the way the results are presented to the user
(skinned virtual character versus stick figure), how a
reduction of the dimensionally of the original data influ-
ences the quality of the results, etc. The adaptation
method presented here could also be used to analyze
and synthesize walks for different human characteristics
that influence the walk style, like gender (male vs.
female walk) or age (children vs. elderly or others).

Additional material

Additional file 1: Video-StylisticGaitSynthesis.mov (quicktime
movie). This short video present some examples of the stylistic walk
sequences that were synthesized in this work and presented to the
participants of the user assessment tests.
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