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Abstract

Ionospheric phase decontamination is the key factor to improve the target detection capability of skywave radar. In
this paper, a new ionospheric phase decontamination algorithm is proposed based on sparse reconstruction. We
transform the problem of estimating ionospheric contamination phase into a sparse optimization problem, then solve
it rapidly by the iterative method to get the modulation frequency caused by ionospheric phase contamination.
Compared with the existing algorithms, the proposed algorithm in this paper has the following advantages: 1. higher
accuracy is obtained under the situation of both fast phase fluctuation and slow phase fluctuation; 2. the proposed
algorithm is more robust to noise; 3. real-data processing results of the proposed algorithm are better.
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1 Introduction
Ionospheric instability will cause a contamination to
the skywave radar echo for the radar signal propagates
through the ionosphere. So, ionospheric decontamination
is a very important procedure affecting target detection
for skywave radar [1–3]. Ionospheric phase contamination
can be regarded as a multiplicative modulation on the sig-
nal, and it will cause echo to be extended in the Doppler
domain. The Doppler spectrum expansion will be worse
under the situation of long coherent processing interval
(CPI) [4]. The broadening of the strong sea clutter Bragg
lines can smear over the nearby low-speed target spec-
trum. It is not conducive for the detection of low velocity
target like low-speed ship. Therefore, ionospheric phase
contamination compensation is one of the key factors to
improve the detection capability of skywave radar [5–8].
A number of ionospheric phase decontamination meth-

ods have been proposed [9]. Bourdillon et al. [10, 11]
proposed maximum entropy spectral analysis (MESA) to
estimate contamination phase. But the method may fail
in the case of fast phase fluctuation because fast phase
fluctuation does not meet the method’s assumption of
linear phase in short period. Howland and Cooper [12]
applied the Wigner-Ville distribution (WVD) to track
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the instantaneous frequency of ionospheric contamina-
tion. Unfortunately, the technique becomes invalid when
there is cross term. Lu et al. [13] presented a polyno-
mial phase signal (PPS) [14] method to compensate iono-
spheric phase contamination. This algorithm still works
when contamination phase changes fast. But, the difficulty
is that there is no effective method to choose the proper
order of polynomial phase signal. To solve the above prob-
lems, Hankel rank reduction (HRR) algorithm [15] has
been proposed based on constructing Hankel matrices
and singular value decomposition (SVD) [16] technique. It
has better performance while its accuracy still needs to be
improved. To address these disadvantages, a large amount
of research has been done. On the basis of HRR, You et al.
[17] addressed the complex energy detection (CED) algo-
rithm to estimate the frequency modulation component.
The CED method obtains higher precision than the HRR
under the situation of both slow phase fluctuation and fast
phase fluctuation [18] .
In this paper, we further study the method to decon-

tamination on the basis of CED method. Considering that
the ionospheric frequency modulation function is sparse
in the time-frequency domain and the sparse signal recon-
struction method has the high estimation precision [19],
we propose a novel phase compensation algorithm based
on sparse reconstruction. Firstly, a sparse optimization
problem is constructed between the ionospheric contam-
ination phase and radar echo. Secondly, we adopt the
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fast iterative method to get the ionospheric modulation
frequency. At last, we compensate the raw echo by the
conjugate of the contamination signal and perform fast
Fourier transform (FFT) to obtain the corrected spectrum.
Compared with the CEDmethod, the algorithm proposed
in this paper has the following advantages: 1. this algo-
rithm has higher estimation precision under the situation
of both slow phase fluctuation and fast phase fluctuation
than the CED method; 2. this algorithm is more robust to
noise. It has higher parameter estimation accuracy than
the CED method in both high SNR and low SNR. Sim-
ulation results show that: 1. in the case of slow phase
fluctuation, this algorithm has more than 6 dB higher esti-
mation precision than the CED method; 2. in the case of
fast phase fluctuation, the estimation precision of the pro-
posed algorithm is more than 8 dB higher than the CED
method; 3. under the situation of low SNR, this algorithm
has more than 7 dB higher estimation precision than the
CED method; 4. in the case of high SNR, the estimation
precision of the proposed algorithm is more than 6 dB
higher than the CED method. In addition, real-data pro-
cessing results of the proposed algorithm are more ideal
than the CED algorithm. The proposed algorithm can
effectively separate the low-speed target spectrum from
the Bragg peak. And, the effect on sharpening the peak
spectrum is better than the CED algorithm.
This article is organized as follows. Section 2 introduces

the problem analysis about ionospheric phase decontami-
nation. Section 3 will present the proposed decontamina-
tion algorithm based on sparse reconstruction. Section 4
will give the simulation results. Section 5 will give the real
data processing results. Section 6 is the conclusion of this
article.

2 The analysis of ionospheric phase
decontamination

The discrete form of skywave radar echo can be expressed
as

z(k) = c(k) + w(k) + v(k), 1 ≤ k ≤ K (1)

where z is the received radar signal, c is the sea clutter sig-
nal, w is the target signal, v is the received noise, K is the
number of pulses during the CPI, and k is the slow time
index.
Because of the resonant effect between the ocean sur-

face wave and high-frequency radar signal, there are two
strong Bragg peaks in the Doppler spectrum of sea clutter.
The frequency of Bragg peaks is as follows

fb = ±
√
gf0
πc

(2)

where g is the acceleration of gravity, f0 is the carrier
frequency and c is the speed of light.

Ionospheric phase contamination will cause sea clutter
broadening in the Doppler domain because the sea clut-
ter is modulated by the nonlinear phase term caused by
the ionospheric movement. Therefore, we can extract the
phase contamination function from the contaminated sea
clutter to get the decontamination function.
Firstly, filter out the strongest Bragg peak from the radar

echo by a adaptive band-pass filter. The bandwidth is sug-
gested to be 0.5 Hz as a typical value by Howland and
Cooper [12]. Taking the negative Bragg peak for example,
the filtered out Bragg peak can be expressed as follows:

s(k) =
[
b−
k e

j2π f −
b kT+ϕ0 + v(k)

]
ejξ(k), 1 ≤ k ≤ K (3)

where s(k) is the filtered out Bragg peak signal, T is the
pulse repetition interval (PRI), K is the number of pulses
during the CPI, k is the slow time index; b−

k , f
−
b and ϕ0

denote the amplitude, Doppler frequency and initial phase
of Bragg peak, respectively; v(k) denotes the white Gaus-
sian noise; ejξ(k) is the phase contamination caused by the
ionospheric instability.
According to formula (3), the key of ionospheric phase

decontamination is to estimate the instantaneous fre-
quency f (k) of the stretched Bragg peak. The frequency
modulation function fr(k) of ionospheric contamination is
formed as follows:

fr(k) = f (k) − fb (4)

where fb is the frequency corresponding to the filtered out
Bragg peak.
By performing integration to the instantaneous iono-

spheric contamination frequency fr(k), the ionospheric
phase contamination function γ (k) is given as follows:

γ (k) = 2π
∑

fr(k) · kT (5)

where fr(k) is the frequency modulation function of iono-
spheric contamination, k is the slow time index and T is
the pulse repetition interval.
Obviously, the more accurate the estimation of instanta-

neous frequency of ionospheric contamination is, the bet-
ter the decontamination effect is. Better decontamination
effect will be more beneficial for detecting targets. There-
fore, improving the estimation precision of ionospheric
frequencymodulation function is the key to improving the
ionospheric decontamination effect.

3 The proposed decontamination algorithm
based on sparse reconstruction

The aforementioned analysis illustrates that the perfor-
mance of ionospheric phase decontamination depends on
the estimation accuracy of instantaneous frequency of
Bragg peak.



Hu et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:93 Page 3 of 10

The instantaneous frequency of Bragg peak modulated
by ionospheric phase contamination is sparse in the time-
frequency domain and the technique of sparse signal
reconstruction has the advantage of high precision [19].
On the basis of above considerations, this paper gives a
high-accuracy ionospheric phase decontamination algo-
rithm based on sparse reconstruction.
Firstly, the estimating of instantaneous frequency of

Bragg peak is converted to a sparse optimization problem
through short-time inverse Fourier transform. Then, the
fast iterative method is applied to solve it. The proposed
algorithm simplifies the calculation of high dimension
matrix in the iterative computation by fast Fourier trans-
form (FFT) and inverse fast Fourier transform (IFFT),
which will greatly reduce the amount of computation.
Compared with the existing algorithms, the proposed
algorithm in this paper obtains high precision under the
situation of both slow and fast phase fluctuation and
better robustness to noise.

3.1 The sparse representation of contamination phase
The filtered out Bragg peak in formula (3) can be formed
by orthogonal basis of the short time Fourier transform
(STFT) as follows [8]

s(k) = 1
N

K∑
n=1

K∑
m=1

S(m, n)g(k − n)ej
2π
N mk , 1 ≤ k ≤ K

(6)

where g(k) is the window function, and in this paper the
hamming window is adopted for its low sidelobe, s(k)
is the kth element of the filtered out Bragg peak in for-
mula (3), S(m, n) is the mth row nth column element
of the STFT time-frequency distribution matrix of Bragg
peak, where m and n represent the time dimension and
frequency dimension, respectively. Formula (6) can be
abbreviated as follows

s = 1√
N
ATx (7)

where s is the signal column vector of the filtered out
Bragg peak with the length of K , x is the rearranged time-
frequency distribution matrix S(m, n) in column and the
rearrangement is x[ kK − K + 1 : kK , 1]= S[ :, k] , k =
1, 2, · · · ,K . x is the instantaneous frequency of Bragg peak
modulated by ionospheric phase contamination, which is
sparse in the time-frequency domain. A ∈ R

K×K2 is a
sparse row block matrix composed of K diagonal matrixes
as formula (8). The diagonal elements of Ai are the sliding
window function g(k − i) as formula (9).

A = [
A1 A2 · · · AK

]
(8)

Ai =

⎡
⎢⎢⎢⎣
g(1 − i) 0 · · · 0

0 g(2 − i) · · · 0
...

...
. . .

...
0 0 · · · g(K − i)

⎤
⎥⎥⎥⎦ (9)

T ∈ C
K2×K2 is a block diagonal matrix with K diagonal

blocks, as formula (10). Each diagonal block matrix Ti has
the same size of K × K , the element in Ti is Ti(m, n) =
1/

√
K · e j 2πK mn,m, n = 1, 2, · · · ,K .

T =

⎡
⎢⎢⎢⎣
T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...
0 0 · · · TK

⎤
⎥⎥⎥⎦ (10)

It is obvious that Ti is the inverse Fourier transform
matrix. Because of Ti

−1 = Ti
H , the inverse matrix Ti

−1

of Ti is the Fourier transform matrix. According to the
property of Ti and Ti

−1, the product Tia and Ti
−1a is

equal to the inverse fast Fourier transform (IFFT) and the
fast Fourier transform (FFT) of a which is a column vec-
tor with K elements. The mathematical expressions are
shown as follows:

Tia = √
KIFFT(a) (11)

Ti
−1a = 1√

K
FFT(a) (12)

For simplification, let y = √
Ns , formula (7) can be

expressed as:

y = ATx (13)

Formula (13) is a sparse optimization problem because
x is sparse in the time-frequency domain.

3.2 The sparse iterative algorithm of ionospheric phase
decontamination

In order to solve Eq. (13), we transform the equation to a
convex optimization problem as follows

x = argmin
x

‖x‖1 s.t.
∥∥ATx − y

∥∥2
2 ≤ β (14)

where ‖x‖1 = ∑i=K2
i=1 |x(i)| is the �1 norm of vector x.

In formula (14), the minimum �1 norm has the prob-
lem of oversparse. In order to circumvent the problem,
we constrain the energy distribution of x in this paper.
Through the minimum �2 norm, the energy of x will be
dispersed to every dimension. So, we add �2 norm of x to
formula (14). The mixed �1 − �2 norm is adopted in this
paper as formula (15), where ‖x‖22 = ∑i=K2

i=1 |x(i)|2 is the
square of x’s �2 norm and α is the weighted coefficient of
�2 norm.

x = argmin
x

(
‖x‖1+ α

2
‖x‖22

)
s.t.

∥∥ATx − y
∥∥2
2 ≤ β

(15)
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A fast iterative algorithm is adopted to solve formula
(15). The iterative procedure is given as follows:

xk+1 = argmin
x

(
‖x‖1 + α

2
‖x‖22 + λ

2
∥∥ATx − yk

∥∥2
2

)

(16)
yk+1 = y + yk − ATxk+1 (17)

Through the iterative calculation of Eqs. (16) and (17),
we can get the value of xk . Then, calculate the error∥∥ATxk − y

∥∥2
2 and stop the iteration if the error is smaller

than the set β .
To solve Eq. (16) simply, a new vector c is used to

approach x to separate the �1 and �2 norm of x by sub-
stituting c’s �1 norm for x’s �1 norm. Then, Eq. (16) is
transformed into Eqs. (18) and (19).

(
xk+1, ck+1

) = argmin
x,c

(
‖c‖1 + α

2
‖x‖22

+ λ

2
∥∥ATx − yk

∥∥2
2

+γ

2
‖c − x − bk‖22

)
(18)

bk+1 = bk + xk+1 − ck+1 (19)

It is easy to figure out xk+1 and ck+1, respectively in
Eq. (18) as formula (20) and (21).

xk+1 = argmin
x

(
α

2
‖x‖22 + λ

2
∥∥ATx − yk

∥∥2
2

+γ

2
‖ck − x − bk‖22

)
(20)

ck+1 = argmin
c

(
‖c‖1 + γ

2
∥∥c − xk+1 − bk

∥∥2
2

)
(21)

In Eq. (20), α denotes the weighting factor of �2 norm.
The value will affect the aggregation of the obtained
time-frequency spectrum. If α → 0, the result will be
oversparse, and if α → ∞, the solution converges to the
nonsparse result with the minimum �2 norm.
Equation (20) can be solved by the simple differential
operation. To simplify the calculation in formula (20), let
d = Tx and solve d firstly as formula (22). Then, obtain
x by x = THd. It is easy to solve Eq. (21) by the shrink
operation as formula (23).

dk+1 = [
(α + γ )I + λAHA

]−1 [
λAHyk + γT (ck − bk)

]
(22)

ck+1 = shrink
(
xk+1 + bk ,

1
γ

)
(23)

The shrink operator in formula (23) is given as follows:

shrink(w, a) = w
|w| max(|w| − a, 0)} (24)

By rearranging the column vector x into a matrix with
the size ofK×K , we obtain the sparse time-frequency dis-
tribution matrix of the filtered out Bragg peak s. At each
time snapshot, we select the peak, then obtain the instan-
taneous frequency f (k) of the Bragg peak. According to
f (k) and formula (4), ionospheric phase contamination
function γ (k) can be obtained by formula (5). The con-
tamination correction function is the conjugate of phase
contamination function. Then, perform the decontamina-
tion to the echo data as follows:

z1(k) = z(k) · e−jγ (k), 1 ≤ k ≤ K (25)

where e−jγ (k) is the ionospheric phase decontamination
function, z(k) is the received radar signal in formula (1),
and z1(k) is the signal after decontamination.
The proposed ionospheric decontamination algorithm

in this paper is summarized as follows:

1. Transform the received signal z(k) into frequency
domain via FFT.

2. Filter out the strongest Bragg peak in the frequency
domain.

3. Perform IFFT and get the Bragg peak signal s.
4. Compute the instantaneous frequency of s according

to the following steps:
Initialize: y = √

Ns,A,T,α, λ, γ ,β ,d0 = ATy,W =
(α + γ )I + λAHA, yk = y,b0 = 0, c0 = 0
While

∥∥Adk − y
∥∥2
2 > β

dk+1 = W−1 [
λAHyk + γT(ck − bk)

]
ck+1 = shrink

(
T−1dk+1 + bk , 1γ

)
bk+1 = bk + T−1dk+1 − ck+1

yk+1 = y + yk − Adk+1
End
x = THdk

5. Rearrange the vector x and obtain the sparse
time-frequency distribution matrix of the filtered out
Bragg peak s.

6. Search the peak of the sparse time-frequency
distribution matrix at each time snapshot, and obtain
the instantaneous frequency f (k) of the Bragg peak.

7. Compute the frequency modulation function of
ionospheric contamination fr(k) = f (k) − fb.

8. Compute the ionospheric phase contamination
function γ (k) = 2π

∑
fr(k) · kT .

9. Perform the decontamination to the received signal
z(k) by z1(k) = z(k) · e−jγ (k), 1 ≤ k ≤ K .

In the proposed algorithm, we use FFT and IFFT to
simplify the multiplications of large-scale block diago-
nal matrix T and T−1. The calculation of T(ck − bk)
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and T−1dk+1 is given as follows: firstly, divide the vector
ck − bk and dk+1 into K segments and each segment con-
tains K elements. Secondly, perform IFFT or FFT to each
segment data. Therefore, the multiplications T(ck − bk)
and T−1dk+1 only need performing IFFT or FFT K times.
It greatly reduces the amount of calculation. The com-
putation is O(N2log2N). The mathematical expressions
are given in formula (26) and (27). IFFTK (ck − bk) and
FFTK (dk+1) denote that divide the vector ck−bk and dk+1
intoK segments, then perform IFFT and FFT for each seg-
ment and arrange the results of K segments into a column
vector.

T(ck − bk) = √
KIFFTK (ck − bk) (26)

T−1dk+1 = 1√
K
FFTK (dk+1) (27)

In the algorithm, A is a row block diagonal matrix, so
the nonzero elements of W = (α + γ )I + λAHA only
distribute in the 2n − 1 lines around the diagonal line,
where n is the length of the window function. Both W
and W−1 have at most K(n2 − n + K) nonzero elements,
so it is easy to obtain accurate W−1. W−1 is stored prior
to iterating, so the calculation won’t increase. In addi-
tion, the computation of shrink operator is very small. So,
in the proposed algorithm, the amount of calculation in
each iteration is mainly caused by calculating T(ck − bk)
and T−1dk+1 whose calculation have been reduced to
O(N2log2N) through FFT and IFFT. Therefore, the pro-
posed algorithm in this paper satisfies fast solution in
engineering.

4 Simulation results
The simulation results in Sections 4.1 and 4.2 show that
the proposed algorithm has higher estimation accuracy
and better decontamination effect than CED algorithm in
the case of both slow and fast phase fluctuation. Accord-
ing to the simulation results in Section 4.3, in both low
SNR and high SNR, the proposed algorithm still has
higher estimation accuracy than CED algorithm.
Table 1 is the simulation parameters used in Sections 4.1

and 4.2. In this paper, α,β , γ is 0.4, 0.2 and 0.4,

Table 1 Simulation parameters

f0 15MHz K 512

g 9.8m/s2 T 0.1 s

CNR 30 dB SNR 5 dB

Doppler frequency of Bragg fb ±0.3949 Hz

Amplitude of negative Bragg b−
k 7

Amplitude of positive Bragg b+
k 5

Doppler frequency of target ft 0.6 Hz

respectively. This article adopts the ionospheric phase
contamination function γ (t) = M cos

(
2π fmt + θ0

)
[15],

which is adopted in a large body of literature. M and fm
denote the amplitude and frequency of the phase con-
tamination function. The corresponding ionospheric fre-
quency modulation function of the phase contamination
is fr(t) = −Mfm sin

(
2π fmt + θ0

)
. Mfm is the amplitude

of modulation frequency. fm denotes the frequency of
phase fluctuation. Big and small fm correspond to fast and
slow phase fluctuation, respectively. Simulation results
show that the proposed algorithm is more accurate than
CED algorithm and has a better decontamination effect.
Besides, the simulation results at different SNR (20 –
50 dB) show that the estimation accuracy of the proposed
algorithm is higher than that of CED algorithm in both
low SNR and high SNR.

4.1 Simulations under slow phase fluctuation
The following simulation results show that, under slow
phase fluctuation, the estimation accuracy of the pro-
posed algorithm is higher than that of CED algorithm and
the decontamination effect is better than CED algorithm.
In the condition of fm=0.05Hz and Mfm = 0.1, the

phase fluctuation is slow. Figure 1 displays the esti-
mated instantaneous frequency of the filtered out Bragg
peak by the proposed algorithm and CED algorithm
compared with the theory frequency. Regardless of the
fixed Bragg frequency, we only focus on the variation
of the modulated frequency caused by ionospheric con-
tamination in Fig. 1. Figure 1 shows that the estimated
instantaneous frequency by the proposed algorithm is
closer to the theory frequency, so the estimation accu-
racy of the proposed algorithm is higher than the CED
algorithm.
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Fig. 1 The instantaneous frequency of the filtered out Bragg peak
(fm=0.05 Hz andMfm=0.1 )
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Fig. 2 The Doppler spectrum of the contaminated signal (fm=0.05 Hz
andMfm=0.1 )

Next, we use the estimatedmodulation frequency by the
proposed algorithm and CED algorithm (in Fig. 1) to com-
pensate the contaminated signal, respectively. Figure 2 is
the Doppler spectrum of the contaminated signal without
decontamination. The expansion of sea clutter spectrum
and the target spectrum is serious. The strong broaden-
ing Bragg peaks spectrum will mask the target spectrum,
which makes it difficult to detect targets. Figure 3 is the
decontaminated signal spectrum by the CED algorithm.
There are many glitches around the Bragg peaks caused
by the residual phase contamination because of the inac-
curate estimation of the contamination frequency. The
target spectrum is buried in these glitches. Figure 4 is
the signal spectrum compensated by the proposed algo-
rithm. The spectrum after decontamination becomes very
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Fig. 3 The decontaminated signal spectrum by the CED algorithm
(fm=0.05 Hz andMfm=0.1 )
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Fig. 4 The decontaminated signal spectrum by the proposed
algorithm (fm=0.05 Hz andMfm=0.1 )

sharp. The Doppler spectrum of the target can be dis-
criminated clearly. Comparing these simulation results,
the proposed algorithm’s decontamination performance is
better than the effect of CED algorithm under slow phase
fluctuation.

4.2 Simulations under fast phase fluctuation
The following simulations show that, in the case of fast
phase fluctuation, the proposed algorithm has higher esti-
mation precision and better performance of decontami-
nation than the CED algorithm.
Under the situation of fast phase fluctuation (fm =

0.25 Hz and Mfm=0.1 ), Fig. 5 displays the instantaneous
frequency of the filtered out Bragg peak estimated by the
proposed algorithm and CED algorithm compared with
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Fig. 5 The estimated instantaneous frequency of the filtered out
Bragg peak (fm = 0.25 Hz andMfm = 0.1)
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Fig. 6 The Doppler spectrum of the contaminated signal (fm=0.25 Hz
andMfm=0.1 )

the theory frequency. The variation of the modulated fre-
quency caused by ionospheric contamination is shown in
Fig. 5. Compared with CED algorithm, the estimated con-
tamination frequency of the proposed algorithm is closer
to the actual frequency, so the estimation precision of the
proposed algorithm is higher.
Then, we use the ionospheric contamination frequency

estimated by the proposed algorithm and CED algo-
rithm (in Fig. 5) to decontaminate the signal, respectively.
Figure 6 is the Doppler spectrum of the original sig-
nal without decontamination. The sea clutter spectrum
and the target spectrum is broadening. The expansion
of strong Bragg peaks makes detecting targets difficult.
Figure 7 is the signal spectrum corrected by the CED algo-
rithm. The residual phase contamination generates the
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Fig. 7 The decontaminated signal spectrum by the CED algorithm
(fm=0.25 Hz andMfm=0.1 )
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Fig. 8 The decontaminated signal spectrum by the proposed
algorithm (fm=0.25 Hz andMfm=0.1 )

glitches around the Bragg peaks for the inaccurate estima-
tion of the contamination frequency. It is bad for detecting
targets because the target spectrum is buried in these
glitches. Figure 8 is the signal spectrum corrected by the
proposed algorithm. The spectrum of the corrected signal
is very sharp. The Doppler spectrum of Bragg peaks and
the target is separated clearly. Comparing Figs. 7 and 8,
the proposed algorithm has better decontamination per-
formance than the CED algorithm under fast phase
fluctuation.

4.3 Simulations in different SNR
Figure 9 shows the estimation frequency’s mean square
error (MSE) in different SNR of the proposed algorithm
and CED algorithm. The MSE is defined as mse =
1
N

∑N
n=1

∣∣∣∣ f (n) −
�

f (n)

∣∣∣∣
2
. A complex frequency modu-

lated signal is adopted in the simulation. The parame-
ters are as follows: the center frequency is 0.5 Hz, the
phase fluctuation frequency varies from 0.05 to 0.25 Hz
with a interval of 0.05 Hz, the sampling frequency is
10 Hz, the sampling point is 512 and the SNR varies
from 20 to 50 dB. Figure 9 illustrates that if the phase
fluctuation frequency fm is a fixed value, the higher the
SNR is, the smaller the MSE is, and the higher the
estimation precision is; if the SNR is fixed, the smaller
the phase fluctuation frequency fm is, the smaller the
mean square error is, and the higher the estimation
precision is.
Comparing the MSE lines of the proposed algo-

rithm and the CED algorithm in Fig. 9, we can
get that: in the case of slow phase fluctuation
(fm=0.05 Hz), the accuracy of the proposed algo-
rithm is 7 dB (SNR=20 dB) and 6 dB (SNR=50 dB)
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Fig. 9MSE of the proposed algorithm and the CED algorithm (SNR=20–50 dB)

higher than the CED algorithm, respectively; further-
more, under the situation of fast phase fluctuation
(fm=0.25 Hz), the accuracy of the proposed algo-
rithm is 8 dB (SNR=20 dB) and 12 dB (SNR=50 dB)
higher than the CED algorithm, respectively. There-
fore, the proposed algorithm has a higher estimation
accuracy than the CED algorithm no matter in
the case of both high and low SNR or under the
situation of both fast and slow phase fluctuation.

5 Real-data processing results
In this section, the Skywave radar real data is pro-
cessed to prove the proposed algorithm and compared
with the CED algorithm. The data comes from a prac-
tical skywave radar. For the first echo, the working fre-
quency is 21.39MHz, the bandwidth is 0.16MHz, the
pulse repetition period is 0.1S, and the pulse accumula-
tion number is 512. For the second echo, the working
frequency is 14.76MHz, the bandwidth is 0.01MHz, the
pulse repetition period is 0.012S, and the pulse accumula-
tion number is 512.
Figure 10 is the Doppler spectrum of a distance cell of

the first echo. The positive Bragg peak is located at about
0.5 Hz, and the negative Bragg peak is located at about
−0.45 Hz. Two low speed ship targets are located at 0
and 1.1 Hz, respectively. Due to the ionospheric phase
contamination, the Doppler broadening exists in the sea
clutter spectrum and the target spectrum. The target

spectrum at 1.1 Hz and the positive Bragg peak are mixed
thus they are hard to be detected.
Figure 11 is the result of the proposed algorithm. From

Fig. 11, it is obvious that the sea clutter spectrum and
the target spectrum are obviously sharpened after the
decontamination of the proposed algorithm. The target
spectrum at 0 Hz is higher and more clear. And, the target
spectrum at 1.1 Hz is separated from the positive Bragg
peak effectively, which can be easily detected.
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Fig. 10 The Doppler spectrum of the real signal
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Fig. 11 The decontaminated real signal spectrum by the proposed
algorithm

Figure 12 is the result of the CED algorithm. In Fig. 12,
the noise floor is slightly higher, the negative Bragg peak
and the target spectrum at 0Hz are relatively sharpened,
but the effect is less ideal than the proposed algorithm.
Besides, the CED algorithm can not visibly distinguish the
target at 1.1 Hz from the positive Bragg peak.
Figure 13 is the Doppler spectrum of a distance cell of

the second echo. Because of the low doppler resolution
and the large phase perturbation, the sea clutter is seri-
ously broadened, and the Bragg peaks overlap at about
0 Hz.
Figure 14 is the result of the proposed algorithm.

Figure 15 is the result of the CED algorithm. From the
figures, the sea clutter is obviously narrowed by the pro-
posed algorithm but the effect of the CED algorithm is
almost invisible.
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Fig. 12 The decontaminated real signal spectrum by the CED
algorithm
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Fig. 13 The Doppler spectrum of the real signal

The above two real-data processing results demon-
strates the validity of the proposed algorithm under the
complex practical background. Compared with the CED
algorithm, the proposed algorithm is more remarkable in
real ionospheric decontamination.

6 Conclusions
This paper presents a novel ionospheric phase decontam-
ination algorithm based on sparse reconstruction. The
proposed algorithm transform the problem of estimating
the modulation frequency of ionospheric phase contam-
ination into a sparse optimization problem, and solve it
by the simple iterative method rapidly to get the modula-
tion frequency. In the proposed algorithm, the estimation
accuracy of ionospheric modulation frequency is higher,
thus the performance of phase decontamination is bet-
ter and the the Bragg peak is sharper and target can be
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Fig. 14 The decontaminated real signal spectrum by the proposed
algorithm
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Fig. 15 The decontaminated real signal spectrum by the CED
algorithm

discriminated in the Doppler spectrum. The simulation
results show that, compared with CED algorithm, the
decontamination performance of the proposed algorithm
is better with the sharper Bragg peak which is beneficial
for detecting the targets. Besides, the estimation precision
of the proposed algorithm is higher under the situation of
both slow and fast phase fluctuation or in the case of both
high and low SNR. In real-data processing results, the pro-
posed algorithm can clearly sharpen the peak spectrum
and separate the low speed target spectrum from the sea
clutter spectrum. Compared with the CED algorithm, the
proposed algorithm is better.
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