- Research
- Open Access

# Joint parameter estimation and Cramer-Rao bound analysis in ground-based forward scatter radar

- Tao Zeng
^{1}, - Cheng Hu
^{1}Email author, - Mikhail Cherniakov
^{2}, - Chao Zhuo
^{3}and - Cong Mao
^{1}

**2012**:80

https://doi.org/10.1186/1687-6180-2012-80

© Zeng et al; licensee Springer. 2012

**Received:**15 May 2011**Accepted:**11 April 2012**Published:**11 April 2012

## Abstract

Forward scatter radar (FSR) has potential applications such as target detection, classification, and recognition. The success of these issues depends on the accuracy of parameter estimation. Many parameter estimation methods for air-based FSR have been given, but cannot directly be applied in the ground-based ones for the different system functions. The received signal in ground-based FSR depends on the target's electrical size and trajectory, which are unknown *a priori*. It is impossible to construct an optimal reception with accurate reference function in practical situations. An adaptive method of parameter estimation is therefore proposed in this article, which includes the construction of reference function and the two-dimensional parameter estimation. Furthermore, the Crammer-Rao bounds of estimation accuracy are obtained via the analytical derivation, which can be in turn utilized to determine the estimation step in the algorithm. Finally, the effectiveness of the algorithm is shown using both simulated and experimental data.

## Keywords

- Radar
- Additive White Gaussian Noise
- Doppler Frequency
- Doppler Signal
- Velocity Estimation

## 1. Introduction

No matter in the modern or future electronic warfare, radar is continuously playing a key role. Historically, bistatic radar is the earliest radar system applied in the warfare field. Only after the substantiation of a pulse method of radar and the development of antenna switches, more convenient monostatic radars were developed and therefore impeded the development of bistatic radar [1, 2]. However, in the modern electronic warfare, due to the advent of the fast development of technology, new threats such as electronic interference, low altitude penetration, stealth weapon, and anti-radiation missiles have to be faced and dealt with. The conventional monostatic radar system has been distressed into dilemma. Radar community revisited the potential of the bistatic system due to its potential to deal with the above issues, and then numerous of hardware and software for the bistatic radars have been proposed, investigated, constructed and built up.

Forward scatter radar (FSR) is an extreme bistatic radar configuration, which is generally defined with the bistatic angle around 170°-180° [3], i.e., the target is sensed close to the radar baseline. The basic principles of FSR can be found in Willis [2] and Chernyak [3, 4]. The main difference compared with the conventional radars (both monostatic and bistatic) lies in its target scattering nature. In the forward scattering (FS) area, the radar utilizes the diffraction effects rather than the reflection effects of the electromagnetic wave to capture the target's information, and therefore brings some winning properties compared with conventional ones. The target can be considered as a secondary antenna which has the silhouette of the target. The gain of this secondary antenna is directly related to the target FS Cross-Section (CS) and is independent from the target material [5]. Therefore, such systems are robust to stealth technology and benefit for target detection. Another peculiarity is that the received signal has little phase and amplitude fluctuation. All FS EM wave components are traveling toward the receiving antenna in phase, and the signal could coherently be integrated over a long period of time, which will in return introduces an excellent frequency resolution. As a result, FSR has unique potential in automatic target recognition [6]. In 2000, the great Shadow Inverse Synthetic Aperture theory was proposed by Chapurskiy and Sablin [7], which makes significant contribution to target classification and recognition based on FSR system.

Till now, most existing publications dedicated to FSR studies focus on the airborne issues. In the air-based FSR system, the velocity of the air target is high [8], and the length of the baseline is far larger than the target size [9], furthermore the clutter background is relatively small [10]. Therefore, the instantaneous Doppler frequency and angle of arrival can effectively be obtained via Doppler filter and multi-beam antenna, and then based on the nonlinear relationship between target coordinate and Doppler frequency as well as angle of arrival, the approximate coordinate estimates are obtained with numerical solution [8–10], but the methods of air targets detection and tracking cannot be used in the ground-based FSR due to the different system behaviors and target motion characteristics.

The ground-based network of FS Micro Radars (FSMR) has been considered for target detection and automatic recognition in [3, 11–16]. It has been demonstrated by means of both analytical and experimental studies that ground targets crossing the baseline can reliably be detected. While in these practical ground-based FSR systems, the sensors are positioned nearly on the ground; the operational range is restricted to hundreds of meters due to the local horizon and landscape peculiarity as well as power budget constraints. All these make it impossible to use the mono-pulse antenna or the array antenna to sense the target. So, the angle of arrival cannot be achieved directly. Moreover, the velocity of the ground target is much lower than the air target, the Doppler frequency will not change enough to allow the Doppler filter extract the Doppler shift (the velocity of the target). The conventional signal processing method for the air target detection and parameter estimation cannot be applied in the ground-based system.

In this article, we consider the method of target detection and parameter estimation in the ground-based FSR system. The radars work under the single carrier Continuous Wave mode and have no capability of range resolving. This means that this radar is only able to detect moving targets. Because the direct signature (from transmitter to receiver directly) is far stronger than the moving target signature, using the envelope detector or phase detector, we can extract the signature of moving target (beat frequency). This signature will occur in the background of clutter including foliage and vegetation, thermal and atmospheric and possibly industrial noise and so forth. The latter could be viewed as Additive White Gaussian Noise (AWGN). Therefore, we will only consider the case of target detection against AWGN under the assumption that a target is following a nearly linear trajectory. Furthermore, numerous observations of ground targets confirm that the linear trajectory assumption is correct for practical cases. Moreover, foliage clutter can be approximated as a narrowband Gaussian process [17–21], and the statistic characteristics in FSMR have empirically been estimated via the experimental data [18–20], thus the optimal detection procedure against clutter background in FSMR includes a whitening filter. Hence, the assumption that the target is detected against AWGN is also true for clutter presence.

*a priori*. That is because the particularity of the ground-based FSR systems which have been mentioned before. As a result, in practical situations, it is impossible to obtain the accurate reference function at the reception side and adaptive method of optimal parameter estimation is therefore proposed. Many motion parameters of the target, such as the velocity, the orientation, the baseline crossing point, and the acceleration, affect the nature of the received signal. For this reason, taking into consideration the practical situation and to simplify the complexity and cut off the computation cost of the algorithm, two influential parameters among them are considered in the proposed algorithm, namely the velocity and the baseline crossing point. In the ground-based FS area, the target will not have much complex motion, and therefore the impact of the acceleration can be neglected. The proposed algorithm is robust to the orientation of the target, which is to say even if the angle is not equal to 90°, we can also estimate the true radical velocity and obtain a good compression result. We also give the Crammer-Rao bound of the estimation accuracy, which can be in turn utilized to determine the estimated step of the parameters. Simulation results as well as the experimental data have been used to verify the correctness and the effectiveness of our method.

This article is organized as follows: The signal model will be presented in Section 2. The signal processing algorithm, including signal-to-noise ratio (SNR) maximization and the joint parameter estimation, will be proposed in Section 3. The Crammer-Rao bounds of our method as well as the simulation and experimental results are given in Section 4. Finally, the conclusion is drawn in Section 5.

## 2. Signal model of ground moving target in FSR

In this section, the signal model of FSR ground moving target will be given. Figure 1 shows the topology of the FSR configuration for moving target. The transmitting and receiving antennas have an equal elevation *h*_{
A
} . The target has the size of *l* * *h*, *v* is the target motion speed, *O* is the crossing point at the baseline, *R*_{
t
} and *R*_{
r
} are the range of T-Target (transmitter to target) and R-Target (receiver to target), respectively, *d*_{
T
} and *d*_{
R
} are the baseline range of *TO* and *OR* correspondingly. On the transmitter side, the azimuth and elevation diffraction angle are *α*_{
h
} and *α*_{
v
} , and similarly on the receiver side, we have *β*_{
h
} and *β*_{
v
} . In short, the relative position of the transmitter, target, and the receiver thoroughly determines the topology of the FSR configuration.

*U*

_{ L }is the magnitude of leakage signal,

*ω*

_{ 0 }is the transmitted carrier frequency,

*φ*

_{0}is the transmitted initial phase.

*U*

_{ tg }(

*t*) is the magnitude of the target echo, which depends on the shape and location of the target. The minus sign is generated by the negative gain of the shadow beam.

*φ*

_{ D }(

*t*) is the Doppler phase which is formed by the Doppler frequency.

*φ*

_{ x }is an unknown phase introduced in the FS process. When the leakage signal power is far greater than the target echo power, let the signal in (1) go through the envelope detector, after removing the direct current (DC) component, the target echo magnitude and the Doppler phase can both be extracted. The output can be expressed as

*φ*

_{ x }-

*φ*

_{0}is equal to 90° [2]. Thereby the resultant received signal can be rewritten as

According to (3), the received target signal consists of two parts, one is the target magnitude *U*_{
tg
} (*t*), and the other is the target Doppler signal sin(2*π f*_{
d
} (*t*)·*t*). Compared with the Doppler signal, the magnitude will not change much during the observation time, and it is largely determined by the propagation mechanism and target scattering model rather than the motion parameter of the target. More details about the characteristic of magnitude can be looked up in [17–21]. On the contrary, the Doppler signal changes much more rapidly with the moving of the target. It is mainly determined by the motion parameter, and is the focus in our algorithm. So, a detailed analysis about the Doppler signal will be presented here.

*α*

_{ v },

*β*

_{ v }are very small and can be regarded as a constant approaching to zero. Then, the Doppler frequency can be simplified as

In (7), we can see that the Doppler frequency depends on the target velocity, the wavelength of the transmitted signal, and the target horizontal diffraction angle. When the target crosses the baseline, namely that *α*_{
h
} = *β*_{
h
} = 0°, the Doppler frequency in (7) equals to zero. Using this point, we can estimate the target crossing moment in the time-frequency domain. To see how the Doppler signal and the target magnitude behave in the real case, simulation and experimental results are given below.

Figure 3a-c shows the comparison of the simulated signal and experimental signal at different carrier frequencies. In Figure 3a, the simulated signal has nearly the same Doppler oscillation with the experimental signal, which verifies the correctness of (7). The higher the carrier frequency is, the higher the Doppler oscillation is. As Figure 3a-c illustrates, the target magnitude behaves more like a window function without much variation. The fast oscillating phase signal has the signature of a double-sided chirp form. The phase signal obviously shows more close relationship with the target motion parameter and could certainly provide more accurate estimation. In the following discussion, we will approximate the target magnitude with a rectangular window function, which is just used to determine the observation interval.

## 3. General signal processing algorithm

In this section, a joint parameter estimation method will be given, which is an improvement of the method given in [22]. In the classical processing algorithm proposed in [22], three different assumptions have been made, namely that the target's motion direction is normal to the baseline, the target crosses the baseline at the midpoint, and the motion of the target is uniformly linear without acceleration. For the velocity direction angle assumption, it is reasonable because the velocity estimation algorithm is very robust to the velocity direction angle. For the no-acceleration assumption, it is very reasonable as well because the interested ground target (human or car or tank) has very small or no acceleration over the observation time (only a few seconds), the small acceleration only results in the asymmetry of compression side-lobe, does not affect the velocity estimation (shown in [23]). For the midpoint assumption, in the proper operation area (*d*_{
T
} /*L* around 0.5), we can obtain the correct velocity estimation and good compression results; outside this operation area, the performance of velocity estimation and target compression deteriorates a lot. However, in practical case, it is impossible to guarantee that the target crosses the baseline at midpoint. Moreover, the target crossing position affects the Doppler signal a lot and then causes the deviation of velocity estimation. Therefore, we need a new algorithm to adapt this case, what is to say, we want to estimate the target crossing position and velocity at the same time.

*S*

_{ r }(

*t, v, d*

_{ T }) here to represent

*S*

_{ r }(

*t*) in (3), for that we assume only the three variables

*t*,

*v*,

*d*

_{ T }determine the change of Doppler frequency

*f*

_{ d }, and then further determine the change of the received signal

*S*

_{ r }. That is to say, except for the natural variable

*t*, the received signal is not only determined by the target velocity, but also by the target crossing position. This is obviously a nonlinear estimation of two variables. According to the classical estimation theory [23], log of likelihood ratio function of the signal under the AWGN in (9) can be expressed as

From (11), because of the high nonlinearity, we cannot obtain the analytical expression of ${\widehat{v}}_{ml}$ and ${\widehat{d}}_{T\phantom{\rule{2.77695pt}{0ex}}ml}$, we can only obtain the numerical solution from the block diagram in Figure 4. But this is a time-consuming process.

*v*and

*d*

_{ T }. Then, we can rewrite the (10) as

*v*,Δ

*d*and perform the parallel processing operation shown in Figure 5 for discrete values of

*v*and

*d*

_{ T }

where *L* is the baseline length, *d*_{T 0}is the starting range from target to transmitter, *M* and *P* are the channel numbers of the filter bank.

The operation structure shown in Figure 5 is an equivalent implementation of (11). The corresponding parameters (*v*_{
m
} ,*d*_{
Tp
} ) with the maximum output are the final estimated results. The values of Δ*v*,Δ*d* in (13) are very important parameters in our algorithm. If the intervals are too long, the estimated results will deviate from the real values a lot and reduce the estimation accuracy. On the other hand, if the intervals are too short, it will dramatically increase the computation cost. Therefore, selecting appropriate incremental intervals is very important, and the Crammer-Rao bounds of the estimation are naturally good references. Using the theoretically best accuracy, i.e., the Crammer-Rao bound, the estimated step can guarantee a good estimation as well as an appropriate computation cost.

## 4. The Crammer-Rao bound

*F*whose elements are the expectation of the second derivative (with respect to

*v*and

*d*

_{ T }) of the Log likelihood function [23]. The Fisher Information Matrix can be written as

*A, B*, and

*C*in the case of

*d*

_{ T }= 0.5

*L*are shown in Figure 6a, and the variations of

*A, B*, and

*C*in the case of

*d*

_{ T }= 0.2

_{L}are shown Figure 6b. For a human target, the observation time is usually more than 25 s, and it can be known that

*A*≫

*C*>

*B*, namely that

*AC*≫

*B*

^{2}(shown in Figure 7), so we think the effect of

*B*can be ignored when calculating the CRLB. That is to say, the CRLB can be simplified as

*E*[*] means the expectation operator. In the first term of (17) and (18), we observe a factor that

*α*

_{ h }and the observation time

*T*

_{ obs }. This is because the larger

*α*

_{ h }and the longer

*T*

_{ obs }will lead to a bigger Doppler shift. Meanwhile, a longer wavelength will reduce the sensitivity of the Doppler frequency, and therefore impact the estimation accuracy. For the crossing point estimation, a bigger difference between the

*α*

_{ h }and

*β*

_{ h }will lead to a bigger difference between the Doppler signals, and therefore results in a better estimation with higher accuracy. As for the wavelength, it has the same conclusion as the velocity estimation. Based on the analytical expression of (22) and (23), simulation results of the Crammer-Rao bounds for the velocity and crossing point estimation are presented in Figure 8, which is under the typical experimental parameter.

From Figure 8, we can see that, when the SNR is 15 dB, the square root of CRLB for the velocity estimation is less than 0.02 m/s, for the crossing point estimation it is less than 0.5 m. So, the estimated step should be set as 0.02 m/s for velocity estimation and 0.5 m for crossing point estimation (where the target model is human with a velocity of 1 m/s, the baseline length is 50 m). If so, the estimation accuracy of the relative velocity can reach 2%, which can well satisfy the requirement for target recognition.

*v*=

*v*

_{ i }-

*v*

_{i-1}. If we assume the target's true velocity is

*v*, a velocity deviation Δ

*v*introduces envelope and phase errors to the reference function (double-side chirp signal) used for signal compression. In general, the effect of envelope error is far less than that of phase error. Therefore, the required Δ

*v*can be determined by the phase error size. As a rule of thumb, taking pi/4 as the maximum tolerable phase error, the choice of Δ

*v*can be written as

where *α*_{
Max
} is the maximal diffraction angle. We can see that velocity step depends on the carrier frequency, baseline distance, and target velocity, where wavelength and baseline distance are known in advance, the diffraction angle are also preset beforehand and approximately determined by the target FS patterns. Here, we assume, as an example, that baseline distance is equal to 50 m, *α*_{
Max
} is 30° (for a human target) and for typical velocity (for a human, 1 m/s) and carrier frequency (151 MHz), the velocity step should be chosen as 0.015 m/s at most.

*d*

_{ T }= 10 m from the transmitter. The length of the baseline is 50 m. The true velocity of the target is 1.62 m/s. Figure 10a shows the received signal of the simulation and experimental data. In Figure 10b, it shows the estimated velocity by the classical method is 1.92 m/s which deviates from the true value a lot. The deviation percentage is $\frac{1.92-1.62}{1.62}\times 100\%=18.5\%$. While in Figure 9, we can see that both the velocity and the crossing point are estimated correctly. The estimated velocity is 1.62 m/s, the crossing point is estimated at 10 and 40 m.

The simulated and experimental results show that the classical processing algorithm cannot obtain the correct the velocity estimation because of the mismatched target crossing position. Our new algorithm cannot only estimate the velocity, but also estimate the target crossing position correctly, although there is no range resolution in the baseline direction. In addition, the new algorithm extend the operation area, that is to say no matter where is the target crossing position, we can always obtain good estimations of the *v* and *d*_{
T
} , contrary to the classical processing algorithm only works in the operation area around *d*_{
T
} /*L* = 0.5 (crossing near the midpoint).

We should point out that there is an ambiguous crossing position in Figure 8. This is because the reference signal is symmetrical when the constructed reference signal has the distance *d*_{
T
} to the transmitter or to the receiver. If we use the netted FSR, it is not difficult to solve the ambiguity problem of crossing position.

## 5. Conclusions

In this article, we have presented a signal processing method for the ground-based FSR system, including the target detection and the joint parameter estimation. It extended the operation area of the classical method. The estimated parameters are very important for further requirements such as target classification and recognition. The Crammer-Rao bounds for the accuracy of the estimations have also been given and be used to determine the estimated step. The algorithm was tested both on simulated and experimental data, all of the results verify the effectiveness of our algorithm.

## Declarations

### Acknowledgements

This study was supported by the National Natural Sciences Foundation of China (Grant Nos. 61172177, 61032009, 61120106004), and partially supported by the Electro-Magnetic Remote Sensing Defence Technology Centre, established by the UK Ministry of Defence, under Project No. 1-27.

## Authors’ Affiliations

## References

- Boyle RJ: Comparison of monostatic and bistatic bearing estimation performance for low RCS targets.
*IEEE Trans AES*1994, 30(3):962-968.MathSciNetGoogle Scholar - Willis NJ:
*Bistatic Radar*. Technology Service Corporation, Raleigh; 1995.Google Scholar - Cherniakov M (Ed):
*Bistatic Radar: Principles and Practice*. Wiley & Sons, New York; 2007.Google Scholar - Chernyak V:
*Fundamentals of Multisite Radar Systems*. Gordon and Breach Science Publishers, NV; 1998.Google Scholar - Ufimtsev PY: Comments on the diffraction principles and limitations of RCS reduction techniques.
*Proc IEEE*1996, 84(12):1830-185.View ArticleGoogle Scholar - Skolnik MI:
*Introduction to Radar Systems*. McGraw-Hill Book Company, New York; 1980:558.Google Scholar - Chapurskiy VV, Sablin VN: SISAR: shadow inverse synthetic aperture radiolocation. In
*Proc Int Radar Conf 2000*. Washington, DC, USA; 2000:332-328.Google Scholar - Myakinkov AV: Optimal detection of high-velocity targets in forward scattering radar.
*5th International Conference on Antenna Theory and Techniques, Kyiv, Ukraine, 2005*2005, 345-347.View ArticleGoogle Scholar - Blyakhman AB, Ryndyk AG, Sidorov SB: Forward scattering radar moving object coordinate measurement.
*The Record of the IEEE 2000 International Radar Conference, Alexandria, VA*2000, 678-682.Google Scholar - Gould DM, Orton RS, Pollard RJE: Forward scatter radar detection.
*Radar 2002, Edinburgh, UK*2002, 36-40.View ArticleGoogle Scholar - Cherniakov M, Abdullah R, Jančovič P, Salous M, Chapursky V: Automatic ground target classification using FSR.
*IEE Proceedings Radar, Sonar and Navigation*2006, 153(5):427-437. 10.1049/ip-rsn:20050028View ArticleGoogle Scholar - Abdullah R, Cherniakov M, Jančovič P, Salous M: Progress on using principle component analysis in FSR for vehicle classification.
*Int Workshop on Intelligent Transportation - WIT, Hamburg, Germany*2005, 7-12.Google Scholar - Cherniakov M, Abdullah R, Chapursky V: Short range forward scattering radar.
*Int Radar Conf*2004, 322-328.Google Scholar - Abdullah R, Cherniakov M, Jančovič P: Automatic vehicle classification in forward scattering radar.
*1st Int Workshop on Intelligent Transportation - WIT, Hamburg, Germany*2004, 7-12.Google Scholar - Cherniakov M, Salous M, Kostylev M, Abdullah R: Analysis of forward scattering radar for ground target detection.
*2nd European Radar Conf., Paris, France*2005, 145-148.Google Scholar - Cherniakov M, Salous M, Jančovič P, Abdullah R, Kostylev V: Forward scattering radar for ground targets detection and recognition.
*Defence Technology Conf, Edinburgh, UK*2005, A-12.Google Scholar - Sizov V, Cherniakov M, Antoniou M: Forward scattering radar power budget analysis for ground targets.
*IEE Proc Radar sonar and Navigation*2007, 1(6):437-446. 10.1049/iet-rsn:20060174View ArticleGoogle Scholar - Long T, Hu C, Cherniakov M: Ground moving target signal model and power calculation in forward scattering micro radar.
*Sci China Ser F Inf Sci*2009., 52(9): doi:10.1007/s11432-009-0154-1Google Scholar - Long T, Hu C, Zeng T, Li XL: Physical modeling and spectrum spread analysis of surface clutter in forward scattering radar.
*Sci China Inf Sci*2010, 53: 1-14. 10.1007/s11432-010-0001-4MathSciNetGoogle Scholar - Hu C, Long T, Zeng T: Statistic characteristic analysis of forward scattering surface clutter in bistatic radar.
*Sci China Inf Sci*2010, 53: 1-12. 10.1007/s11432-010-0001-4MathSciNetGoogle Scholar - Kostylev VI, Cherniakov M: Analysis of the signal model for forward scattering radar in case of a small target.
*Proceedings of the 5th European Radar Conference, Munich, Germany*2007, 126-129.Google Scholar - Cheng H, Antoniou M, Cherniakov M, Sizov V: Quasi-optimal signal processing in ground forward scattering radar.
*RADAR '08. IEEE, Radar Conference, Roman, Italy*2008, 1-6.Google Scholar - Trees V, Harry L:
*Detection, Estimation, and Modulation Theory.*John Wiley & Sons, New York; 1971.Google Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.