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1 Introduction
The development of information technology has been marked by a remarkable evolu-
tion, with wireless communication and edge computing playing pivotal roles in this 
transformative journey [1–3]. Wireless communication technologies have fundamen-
tally reshaped the way we connect and communicate, enabling ubiquitous access to data 
and services [4–6]. From the early days of mobile phones to the advent of high-speed 
5 G networks, wireless communication has grown to support a vast array of devices and 
applications, facilitating real-time data transfer and enabling the Internet of Things (IoT) 
[7–9]. Concurrently, the rise of edge computing has revolutionized data processing, 
bringing computational power closer to the data source [10–13]. This shift has not only 
reduced latency but also unlocked new possibilities for real-time decision-making and 
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analytics at the edge, enabling applications like autonomous vehicles, smart cities, and 
industrial automation. The synergy between wireless communication and edge comput-
ing has laid the foundation for a future where information technology is seamlessly inte-
grated into our daily lives, driving innovation, efficiency, and connectivity across various 
sectors. As these technologies continue to advance, the landscape of information tech-
nology will undoubtedly see further transformation, delivering enhanced experiences 
and unprecedented capabilities to users worldwide.

The development of IoT networks has seen a remarkable evolution, ushering in a 
new era of connectivity and data-driven insights [14–17]. Monitoring IoT networks has 
become a critical aspect of this development, as the sheer scale and complexity of IoT 
deployments demand continuous oversight [18–21]. To effectively monitor these net-
works, advanced technologies such as edge computing and machine learning (ML) are 
employed to process and analyze the vast amount of data generated by IoT devices in 
real time [3, 6, 22, 23]. This proactive monitoring approach enables predictive mainte-
nance, early detection of anomalies, and efficient resource management, ensuring the 
optimal functioning of IoT devices and, consequently, the success of various IoT appli-
cations across industries ranging from healthcare and smart cities to agriculture and 
industrial automation [24–27]. As IoT networks continue to expand and diversify, moni-
toring solutions will play an indispensable role in maintaining their reliability, security, 
and performance.

Intelligent reflecting surface (IRS) is a transformative technology in wireless com-
munication systems, significantly enhancing data rate, minimizing outage probability, 
and improving symbol error rate (SER). By deploying passive reflecting elements, IRS 
optimizes signal propagation, enabling multi-path signal control and beamforming. 
This results in substantial data rate enhancement as signals can be efficiently focused 
on the intended receivers, mitigating interference and boosting spectral efficiency. The 
outage probability is drastically reduced as IRS units actively respond to environmental 
conditions, such as path loss and fading, to ensure consistent signal coverage. Addition-
ally, IRS enhances the SER by mitigating the effects of channel impairments, facilitat-
ing reliable and low-error communication. These combined advantages position IRS as 
a promising solution for the next-generation wireless networks, offering the potential to 
revolutionize data transmission and reliability across various applications and scenarios.

Motivated by the above literature review, this study provides a comprehensive assessment 
of multi-agent IoT monitoring systems empowered by IRS technology. We delve into the 
impact of three criteria for selecting IRS units on the system performance. In particular, 
our analysis centers on the derivation of outage probability expressions for each of these 
selection criteria. The exploration commences with an introduction to IRS and its pivotal 
role in IoT monitoring. Subsequently, we present three IRS unit selection criteria: optimal 
selection (OS), partial selection (PS), and random selection (RS). Each of these criteria is 
subjected to rigorous mathematical modeling and analysis to gauge their influence on the 
system reliability and IoT device connectivity. The outage probability expressions derived 
from our investigation provide valuable insights into the nuanced trade-offs inherent to dif-
ferent IRS unit selection criteria within the context of IoT monitoring. Moreover, our find-
ings make meaningful contributions to the enhancement of multi-agent IoT monitoring 
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systems, ultimately leading to improved communication performance and heightened reli-
ability, thus advancing the realization of a seamlessly efficient IoT ecosystem.

2  System model
As shown in Fig. 1, we consider a communication based IoT monitoring system with one 
sender S, one destination D and one IRS composed of N units. Precisely, the absence of the 
direct wireless link between the source S and destination D necessitates their communica-
tion to be established indirectly through the intermediary IRS. In this network, the signal-
to-noise ratios (SNRs) at S and D are given by

where P is the transmit power at the S, and σ 2 is the variance of the additive white Gauss-
ian noise (AWGN). Moreover, let |g1n|2 and |g2n|2 denote the channel gains from the S to 
the IRS and the IRS to the D, respectively, where n denotes the n-th (n ∈ {1, 2, . . . ,N }) 
unit of the IRS, and g1n ∼ CN (0,β1) , g2n ∼ CN (0,β2) , respectively. Without loss of gen-
erality, we assume that all wireless links experience free-space path loss. Hence, β1 and 
β2 are given by,

where d1 ∈ (0, 1) is a relative distance, and a larger d1 results in an enhanced first-hop 
relaying with a weaker second-hop relaying. Then, we can obtain the transmission data 
rate with the assistance of the IRS as

(1)γS =
P

σ 2
,

(2)γDn =
P

σ 2
|g1n|2|g2n|2,

(3)β1 = d−2
1 ,

(4)β2 = (1− d1)
−2,

(5)Rn =
1

2
log2(1+ γDn).

Fig. 1 IoT monitoring system assisted by IRS
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3  Unit selection and performance analysis
Within this section, our initial focus lies in presenting a comprehensive analysis of the sys-
tem outage probability, followed by the meticulous derivation of closed-form expressions 
that encapsulate the outage probability. These expressions are developed to specifically 
account for a range of diverse IRS unit selection criteria, ensuring a thorough understand-
ing of the underlying dynamics and performance implications.

Firstly, the outage occurs when

where Rth is the transmission rate threshold, which means the transmission rate with the 
assistance of the IRS Rn is lower than Rth . Hence, the outage probability can be denoted 
as 

 where γth denotes the SNR threshold. We can further write (7) as 

In order to better utilize the IRS, we propose three IRS unit selection criteria, namely the 
optimal selection criterion, partial selection criterion, and random selection criterion. Next, 
we analyze the communication outage probabilities Pout,n under the three criteria.

3.1  Optimal selection (OS)

At the first, the optimal selection criterion means that

Thus, we assume

and for X1 , its cumulative distribution function (CDF) is 

(6)Rn < Rth,

(7a)Pout,n = Pr(Rn < Rth),

(7b)= Pr
1

2
log2(1+ γDn) < Rth ,

(7c)= Pr(γDn < 22Rth − 1 = γth),

(8a)Pout,n = Pr

(

P

σ 2
|g1n|2|g2n|2 < γth

)

,

(8b)= Pr

(

|g1n|2|g2n|2 <
σ 2

P
γth

)

.

(9)n∗ = arg max
1≤n≤N

∣

∣g1n
∣

∣

2∣
∣g2n

∣

∣

2
.

(10)Xn = |g1n|2|g2n|2,

(11a)F(X1) = P(X1 ≤ x1),

(11b)= P(|g11|2|g21|2 ≤ x1),
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 where K1(·) is the modified Bessel function of the second type.
Similarly, we can obtain the CDF of Xi as,

For

its cumulative distribution function is 

 we can further write (14b) as 

 Because of

the outage probability of OS criterion can be given by 

(11c)= 1− 2

√

x1

β1β2
K1

(

2

√

x1

β1β2

)

,

(12)F(Xi) = 1− 2

√

Xi

β1β2
K1

(

2

√

Xi

β1β2

)

. (i = 1, 2, . . . ,N )

(13)Y = max{x1, x2, . . . , xN },

(14a)FY (y) = P{Y ≤ y}

(14b)=
[

1− 2

√

y

β1β2
K1

(

2

√

y

β1β2

)]N

,

(15a)FY (y) = C0
N1

N

[

−2

√

y

p1β2
K1

(

2

√

y

p1β2

)]0

+ · · ·

(15b)+ CN
N 10

[

−2

√

y

β1β2
K1

(

2

√

y

p1β2

)]N

(15c)=
N
∑

i=0

Ci
N

[

−2

√

y

β1β2
K1

(

2

√

y

β1β2

)]i

(15d)=
N
∑

i=0

Ci
N [−2d1(1− d1)

√
yK1(2d1(1− d1)

√
y]i.

(16)fY (y) = F
′
Y (y),

(17a)Pout,n = Pr

(

Y <
σ 2γth

P

)

,

(17b)=
∫

σ2γth
P

0
f (y)dy,
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 with

3.2  Partial selection (PS)

To simplify the analysis, we choose to derive the outage probability of the PS criterion based 
on the CSI of the second-hop of the IRS. At the first, the PS criterion means that

In the same way before, we let

thus, we have

From the above results, we can write the outage probability as, 

(17c)=
N
∑

i=0

Ci
n(−1)i[AK1(A)]

i,

(18)A = 2d1(1− d1)σ

√

γth

P
.

(19)n∗ = arg max
1≤n≤N

|g2n|2.

(20)Y = max{|g21|2, |g22|2, . . . , |g2n|2},

(21)z = |g1n|2,

(22)FY
(

y
)

=
(

1− e
y
β2

)N

,

(23)FZ(z) = 1− e
− z

β1 ,

(24)f
(

y
)

=
N

β2

(

1− e
− y

β2

)N−1

e
− y

β2 ,

(25)f (z) =
1

β1
e
− z

β1 .

(26a)Pout,n = Pr

(

z <
σ 2γth

PY

)

,

(26b)=
∞
∫

0

σ2γth
Py
∫

0

N

β2

(

1− e
− y

β2

)N−1

e
− y

β2
1

β1
e
− z

β1 dzdy,
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 Due to

we have

Thus, we can rewrite (26c) as 

 with

3.3  Random selection (RS)

According to |g1n|2 ∼ Exp(β1) and |g2n|2 ∼ Exp(β2) , we can obtain the probability density 
functions f|g1n|2(x) and f|g2n|2(x) as,

Then, the associated cumulative distribution functions are

Thus, we can write the outage probability as 

(26c)

= 1−
N

β2

N−1
∑

i=0

(−1)iCi
N−1

2σd1

1− d1

√

γth

P(i + 1)

× K1

(

2σd1(1− d1)

√

(i + 1)γth

P

)

.

(27)kCk
N = NCk−1

N−1,

(28)NCi
N−1 = (i + 1)Ci+1

N .

(29a)Pout,n = 1+
N
∑

i=1

(−1)iCi
NBK1(B),

(30)B = 2σd1(1− d1)

√

iγth

P
.

(31)

f|g1n|2(x) =

{

1
β1
e
− x

β1 , If x > 0.

0, Otherwise.

f|g2n|2(x) =

{

1
β2
e
− x

β2 , IF x > 0.

0, Otherwise.

(32)F|g1n|2(x) = 1− e
− x

β1 ,

(33)F|g2n|2(x) = 1− e
− x

β2 .

(34a)Pout,n = Pr

(

P

σ 2
|g1n|2|g2n|2 < γthPr

)

,

(34b)= PrPr

(

|g1n|2 <
σ 2γth

P|g2n|2
Pr

)

,
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 with

Then, we can further write (34c) as 

 As 

 Equation (36) can be rewritten as 

Finally, the outage probability of the RS criterion can be written as 

with

(34c)= Pr

(

X <
σ 2γth

PY

)

,

(35)
∣

∣g1n
∣

∣

2 = X ,
∣

∣g2n
∣

∣

2 = Y .

(36a)Pout,n =
∫ ∞

0

∫

σ2γth
PY

0
f (x, y)dxdy,

(36b)=
∫ ∞

0

∫

σ2γth
PY

0

1

β1
e
− x

β1
1

β2
e
− y

β2 dxdy.

(37a)
∫

σ2γth
ρy

0

1

β1β2
e
− x

β1 e
− y

β2 dx

(37b)=
1

β2
e
− x

β1 e
− y

β2 |0
σ2γth
Py

,

(37c)=
1

β2
e
− y

β2 −
1

β2
e
− y

β2 e
− σ2γth

Pyβ1 ,

(38a)Pout,n =
∫ ∞

0

(

1

β2
e
− y

β2 −
1

β2
e
− y

β2 e
− σ2γth

Pyβ1

)

dy

(38b)= e
− y

β2 |0∞ −
∫ ∞

0

1

β2
e
− y

β2 e
− σ2γth

Pyβ1 dy

(38c)= 1−
∫ ∞

0

1

β2
e
− y

β2 e
− σ2γth

Pyβ1 dy.

(39a)Pout,n = 1−
1

β2

2σd1

(1− d1)

√

γth

P
K1(A)

(39b)= 1− AK1(A),
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Overall, the above three selection criteria for IRS units, namely optimal selection, 
partial selection, and random selection, present a trade-off between the implementa-
tion complexity and outage performance. Specifically, optimal selection, while offering 
the best outage performance, demands a higher implementation complexity due to its 
requirement for extensive channel state information and computational optimization. 
Partial selection strikes a balance between complexity and performance by making 
informed choices based on partial channel knowledge. In contrast, random selection, 
the simplest to implement, typically results in higher outage probabilities, as it selects 
IRS units without considering specific performance metrics or channel conditions. The 
choice of selection criterion should be made by considering the specific application 
requirements and available resources.

4  Simulation results and discussions
In this section, we present a series of simulations aimed to verify the proposed studies. 
If not specified, the simulation environment is set as follows. The communication rate 
threshold is set to Rth = 0.1 bps/Hz, the parameter for the relative distance is d1 = 0.3, 
and the total number of IRS units is N = 4. Moreover, the variance of AWGN is set to σ 2 
= 1, the transmit SNR is set to γS = 0 dB, and the transmit power P is 1 W. 

Figure  2 and Table  1 illustrate the effect of the total number of IRS units N on the 
analytical and simulated outage probabilities for the three unit selection criteria, where 
N takes values from the set {1, 4, 9, 16, 25, 36} , and Rth is set to 2 bps/Hz. In Fig. 2 and 
Table  1, we can observe that the outage probability of the OS criterion significantly 
decreases with an increase of N. This reduction is due to a larger number of IRS units, 

(39c)A = 2d1(1− d1)σ

√

γth

P
.

1 4 9 16 25 36
Number of RIS units N

10-8
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Analysis (OS)

Fig. 2 Outage probability versus the number of IRS units
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which increases the capacity of the IRS. Additionally, the OS criterion consistently out-
performs the other two criteria. Specifically, at N = 25, the simulated outage probability 
of the OS criterion is approximately 7.28× 10−6 , the simulated outage probability of the 
PS criterion is about 1.73× 10−1 , and the simulated outage probability of the RS cri-
terion is approximately 6.23× 10−1 . Moreover, the analytical and simulation solutions 
perfectly overlap, providing evidence for the validity of the derived expressions on the 
system outage probability. 

Figure 3 shows the impact of the relative distance d1 on the analytical and simulated 
outage probabilities of the three unit selection criteria, where d1 varies from 0.1 to 
0.9. As shown in Fig.  3, we can see that the outage probability shows an increasing 
and then decreasing trend with d1 , which indicates that the system has a high outage 
probability when the IRS is in the middle of S and D. Moreover, the analytical results 
overlap with the simulation results, verifying the closed-form solutions. In further, 
the outage probability under the OS criterion is consistently lower than that under 
the RS and PS criteria. Specifically, at d1 = 0.9, the simulated outage probability of 
the OS criterion is approximately 4.00× 10−9 , the simulated outage probability of the 

Table 1 Numerical outage probability versus the number of IRS units

N 1 4 9 16 25 36

Sim:RS 6.23e−1 6.23e−1 6.23e−1 6.23e−1 6.23e−1 6.23e−1

Ana:RS 6.23e−1 6.23e−1 6.23e−1 6.23e−1 6.23e−1 6.23e−1

Sim:PS 6.23e−1 3.35e−1 2.39e−1 1.97e−1 1.73e−1 1.57e−1

Ana:PS 6.23e−1 3.35e−1 2.39e−1 1.97e−1 1.73e−1 1.57e−1

Sim:OS 6.23e−1 1.51e−1 1.41e−2 5.14e−4 7.28e−6 4.50e−8

Ana:OS 6.23e−1 1.51e−1 1.41e−2 5.14e−4 7.26e−6 3.98e−8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Relative distance d1

10-9

10-8

10-7

10-6

10-5
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O
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e 
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Simulation (RS)
Analysis (RS)
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Analysis (PS)
Simulation (OS)
Analysis (OS)

Fig. 3 Outage probability versus the relative distance d1



Page 11 of 14Sun et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:36  

PS criterion is about 8.00× 10−4 , and the simulated outage probability of the RS cri-
terion is approximately 7.87× 10−3 . This is because that the OS criterion effectively 
utilizes the IRS to assist the communication.

Figure 4 shows the simulated and analytical results versus the data rate threshold 
Rth , where the threshold Rth increases from 0.1 to 1 bps/Hz. From Fig. 4, it can be seen 
that the outage probabilities in the communication links increase as Rth increases, 
which indicates that a smaller Rth leads to an improved outage performance. More-
over, the analyzed results overlap with the images of the simulation results, verify-
ing the closed-form solution. In further, the outage probability of the OS criterion is 
higher than that of the PS and RS criteria. Specifically, at Rth = 1 bps/Hz, the simu-
lated outage probability of the OS criterion is approximately 5.93× 10−3 , the simu-
lated outage probability of the PS criterion is about 8.40× 10−2 , and the simulated 
outage probability of the RS criterion is approximately 2.77× 10−1.

Figure 5 depicts the comparison of the simulated and analytical system outage prob-
abilities versus the transmit SNR γS , which varies from −5 to 5 dB. From Fig. 5, the 
congruence between the analytical and simulated results validates the accuracy of the 
derived expression for outage probability. Moreover, a higher γS yields an improved 
overall outage performance due to increased γS at the S, resulting in higher receive 
SNR at the D. Notably, the OS criterion consistently outperforms the other criteria, 
which is because that it can effectively leverage the increasing γS through IRS to sig-
nificantly enhance outage performance. Specifically, at SNR = 5 dB, the simulated 
outage probability of the OS criterion is approximately 2.20× 10−8 , the simulated 
outage probability of the PS criterion is about 1.40× 10−3 , and the simulated outage 
probability of the RS criterion is approximately 1.25× 10−2.
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Fig. 4 Outage probability versus the data rate threshold Rth
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5  Conclusion
This paper investigated the usage of IRS in the efficiency of IoT monitoring systems 
within wireless communication environments. Three IRS unit selection criteria, 
namely optimal selection, partial selection, and random selection, were considered 
for enhancing the system performance. The derived outage probability expressions 
provided valuable insights into the trade-offs inherent in each selection criterion, 
allowing for informed decision-making in IoT monitoring deployments. By optimiz-
ing IRS-based IoT systems, we were able to substantially enhance communication 
performance and bolster reliability, thereby contributing to the ongoing development 
of a seamless and efficient IoT ecosystem. This study underscored the potential of IRS 
technology to reshape the landscape of IoT applications and laid the groundwork for 
further research and practical implementations in this evolving field.
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